
FileMaker Development Conventions

November 1, 2005 FileMaker Development Conventions v1.0

- 2 -

©2005 FileMaker, Inc. All rights reserved. FileMaker is a trademark of
FileMaker, Inc., registered in the U.S. and other countries. The file folder logo
and ScriptMaker are trademarks of FileMaker, Inc. All other trademarks are
the property of their respective owners. Product specifications and availability
subject to change without notice.

FileMaker documentation is copyrighted. By downloading from the FileMaker
website you agree not to make additional copies or distribute this
documentation without written permission from FileMaker.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, AND FILEMAKER, INC., DISCLAIMS ALL WARRANTIES, EITHER
EXPRESS OR IMPLIED, INLCUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY OR FITNESS FOR A PARTICULAR
PURPOSE, OR THE WARRANTY OF NON-INFRINGEMENT. IN NO EVENT
SHALL FILEMAKER, INC., OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES
WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS, PUNITIVE OR SPECIAL
DAMAGES, EVEN IF FILEMAKER, INC., OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY. FILEMAKER
MAY MAKE CHANGES TO THIS DOCUMENT AT ANY TIME WITHOUT
NOTICE. THIS DOCUMENT MAY BE OUT OF DATE AND FILEMAKER
MAKES NO COMMITMENT TO UPDATE THIS INFORMATION.

November 1, 2005 FileMaker Development Conventions v1.0

- 3 -

Introduction
Programming in FileMaker® Pro is quite different from programming in other development
environments. FileMaker developers have the freedom to rapidly create and modify applications
without having to deal with many of the constraints or concerns other developers experience.
When employing an interactive approach to design, a tool like FileMaker lets you modify and
extend functionality with little regard to dependencies elsewhere in the solutions. However, the
more complex the solutions, the more difficult it is to maintain.

For instance, without leaving the development context and navigating numerous dialogs, it’s
impossible to understand essential information about FileMaker Pro’s primary programmable
object: the field. What is its data type? What is dependent on it? How does it store data? What
is its location or participation in the relationship graph? How will it behave in a script, on a
layout, in a calculation, or in a value list?

FileMaker Pro’s flexibility offers numerous and unique ways to approach development. This has
led to a plethora of redundant but different standards. Many developers use standards; but each
uses their own, tied to their specific development methodology and unique preferences. Some
developers have publicly published their standards, but adoption has been limited.

No naming convention can address every conceivable development methodology and solution
design. Furthermore, it would be counter-productive to try to establish such a rigid rule set.
What you need are baseline recommendations to establish a set of criteria you should consider
for any naming conventions. This baseline would be a starting point you can extend into a richer
convention to meet the needs of more demanding solutions and design methods.

In response to this need, FileMaker Inc. established a committee that brings together experts
within the FileMaker development community to create awareness and establish guidance for
naming conventions. This dedicated group, known as the FileMaker Development Conventions
Advisory Committee (FDCAC), represents a cross-section of expert, FileMaker Solutions
Alliance (FSA) partners and associate members from around the world. Collectively, they
represent hundreds of years of experience working on individual and enterprise projects and
packaged solutions development. This committee provides a wide variety of opinions and
practices, representing a broad spectrum of approaches to conventions rather than one specific
view.

The objective of the FDCAC was to create the FileMaker Development Conventions (FDC)
white paper, the goal of which is to promote consistency and professionalism among FileMaker
solutions.

The FileMaker developer base is extremely diverse. The approachability of the product makes it
a clear choice for novice application developers, and the rapid application development nature of
the tool is attractive to more seasoned developers, too. The amount of effort a developer needs
to apply to naming conventions is different at each end of the spectrum.

The FDC is designed to provide all levels with some degree of interest, but is especially designed
for the intermediate developer. The FDC isn’t targeted at the FileMaker Pro beginner. However
it also isn’t for extremely advanced solution developers because the convention guidance might
not be sufficient. Likewise, commercial or packaged solutions developers might not find the FDC
directly applicable because the complexity and architecture might require more stringent and
specific conventions. But these developers can leverage some of the wisdom in the document to
further refine their specific conventions.

November 1, 2005 FileMaker Development Conventions v1.0

- 4 -

The general FDC recommendations give developers a template to work with. The “standards-
aware” recommendations don’t address every conceivable architecture or methodology.
However, they do provide well-founded guidance on where to start, which is likely to evolve
over time.

The FDCAC approach was to identify and further define the specific problems naming
conventions are designed to address. With the problems identified, the committee then looked
for commonalities among the plethora of variants. In many cases, simply defining a set of
consistent guidelines addresses the concern. However, there are other topic areas where a
particular style or development methodology dictates the convention to apply. In these cases,
the FDC has elected to provide recommendations for general standards and additional
considerations that provide insight on how some developers have approached these more
advanced areas.

The FDC is made up of multiple topics that cover almost any aspect within the FileMaker
development environment where a developer might apply naming conventions. Topics include:

 File naming
 Table naming
 Field naming
 Table Occurrence naming
 Layout naming
 Calculation documentation and formatting
 Value list naming
 Custom Function documentation and formatting
 Account naming
 FDC adherence documentation

Each section has three sub-sections, the first of is the Problem Definition section. This section
identifies the key areas where a developer might apply a convention:

 Address a shortcoming of the development environment,
 Avoid all-too-common-convention pitfalls, or
 Apply consistency, understanding, and documentation.

The second section of the FDC discusses recommendations for being what the FDCAC calls
“standards-aware.” This provides a template, a shell if you will, that developers can use when
applying conventions to their projects.

Last, the document discusses a few examples of how FDCAC members have approached
conventions in each topic area. The purpose is to provide a sample of more advanced concepts
and extensions above and beyond what the FDC “standards-aware” provides.

Although FileMaker believes all levels of developers can benefit from the information within the
FDC, the greatest benefactor is the FileMaker community. This is the first step in an evolving
process.

Clearly, this document isn’t for everyone. If you’re just starting with FileMaker, we encourage
you to keep doing what you’re doing, but we also encourage you to peruse the FDC to become
familiar with its concepts. If you’re building the next killer application and you’ve developed your

November 1, 2005 FileMaker Development Conventions v1.0

- 5 -

own conventions to address more advanced methodologies, this is somewhat of a review.
However, we hope you consider the information and try to utilize it whenever you can.

For all those developers somewhere in the middle, you have the knowledge of expert
FileMaker partners and associates available to you, so use them. The FDC document’s guidance
can help you accelerate the deployment of professional and durable solutions.

Preface

The FileMaker Development Conventions document (FDC) is in no way intended to be
considered the “right” or mandated way you should develop your FileMaker solutions. It would
be counterproductive to try to establish such a rigid rule set. After all, one of the hallmarks of
FileMaker is its flexibility. Neither FileMaker nor anyone else can mandate the methodology of
your solution or your naming convention. We also do not believe that any one or any single
organization has sufficient perspective required to establish a convention either. The effort put
forth here is about establishing a first step in what is sure to be an evolving process. Its success
is not dependent upon any one individual. The FileMaker community, as a whole, needs to
gravitate towards this effort and collectively nurture it throughout its evolution. It is clear there
is motivation within the FileMaker development community to utilize a standards framework, as
we all know the benefits for communication and durability.

There are considerable advantages to the effort. Collaborative development teams can work
with one another easier. Developers from different organizations may be able to quickly
understand the others code, and even their own code years later. It enables a more consistent
and understood approach to creating templates and open solutions that are shared. It can
establish clear and consistent documentation. And some of the simplest guidelines can prevent
common solution evolution problems as well as compatibility issues.

FDC version 1.0 was developed with the FileMaker 7 product line, as the basis of its content.
Some consideration was given to FileMaker 8 where easily applicable, however, the FDC
specifically chose to not address, in too much detail, the new features available in the FileMaker
8 product line. This decision was in line with one of the primary goals, which was to provide
“real-world” based guidance; this did not exist before the writing of this document. Future FDC
documents will provide additional guidance should it be necessary.

New and seasoned developers alike will benefit from the birth of the FDC. As the FileMaker
product evolves, the myriad ways we approach problems will likely change as well. The
community needs this continuing effort and with the support of the FileMaker community, like
the FileMaker product line, it is likely to become better with each version.

November 1, 2005 FileMaker Development Conventions v1.0

- 6 -

Acknowledgements
We want to whole-heartedly thank each of the following companies for their liberal consent of
time and profound knowledge donated to this project.

Beezwax http://www.beezwax.net
 Vince Menanno
 Rick Aguire
Core Solutions http://www.coresolutions.ca
 Steve Hearn
Dataworks http://www.dataworks.ca
 James Hea
DataWaves International http://www.data-waves.com
 Peter Makin
 Colleen Hammersley
FileMaker http://www.filemaker.com

Geist Interactive http://www.geistinteractive.com
 Todd Geist
InResonance http://www.inresonance.com
 Corn Walker
iSolutions http://www.isolutions.com
 Cris Ippolite
Management Counseling Services http://www.fmp-power.com
 Steven Blackwell
The Moyer Group http://www.moyergroup.com
 Chris Moyer
New Millennium Communications http://www.nmci.com
 Danny Mack
Soliant Consulting www.soliantconsulting.com
 Steve Lane
 Scott Love
 Rodger Jacques
The Support Group http://www.supportgroup.com
 Chad Novotny

November 1, 2005 FileMaker Development Conventions v1.0

- 7 -

FileMaker Development Conventions
Table of Contents
1 FILES ... 9

1.1 OBJECTIVES ... 9
1.2 PROBLEM DEFINITION ... 9
1.3 STANDARDS AWARE GUIDELINES (FILES) .. 11
1.4 ANCILLARY CONSIDERATIONS:... 13

2 TABLE NAMING ... 14
2.1 OBJECTIVES ... 14
2.2 PROBLEM DEFINITION ... 14
2.3 STANDARDS AWARE GUIDELINES (TABLES) .. 16
2.4 ANCILLARY CONSIDERATIONS.. 16

3 FIELD NAMING ... 18
3.1 OBJECTIVES ... 18
3.2 PROBLEM DEFINITION ... 19
3.3 STANDARDS AWARE GUIDELINES (FIELDS) ... 20

3.3.1 General Fields ... 20
3.3.2 Key/Match Fields... 21
3.3.3 Utility Fields ... 23
3.3.4 Field Notation Reference ... 24

3.4 ANCILLARY CONSIDERATIONS.. 25
4 TABLE OCCURRENCES .. 26

4.1 OBJECTIVES ... 26
4.2 PROBLEM DESCRIPTION .. 27
4.3 STANDARDS AWARE GENERAL GUIDELINES (TABLE OCCURRANCES) .. 28

4.3.1 Functional Spider Grouping (FSG) Method .. 29
4.3.1.1 Functional Spider Grouping Pros ..30
4.3.1.2 Functional Spider Grouping Cons ...31
4.3.1.3 Functional Spider Grouping: Standards Aware Guidelines ...31

4.3.2 Functional Table Occurrence Groups (FTOG) Method... 32
4.3.2.1 Functional Table Occurrence Grouping (FTOG) Pros ...32
4.3.2.2 Functional Table Occurrence Grouping (FTOG) Cons ..33
4.3.2.3 Functional Table Occurrence Groups: Standards Aware Guidelines ..33

4.3.3 Anchor Buoy / Hierarchical Table Occurrence Grouping (HTOG) Method 37
4.3.3.1 Anchor Buoy / (HTOG) Pros ..37
4.3.3.2 Anchor Buoy / (HTOG) Cons...38
4.3.3.3 Anchor Buoy / HTOG Standards Aware Guidelines...38

4.4 ANCILLARY CONSIDERATIONS.. 40
5 LAYOUTS ... 42

5.1 OBJECTIVES ... 42
5.2 PROBLEM DEFINITION ... 43
5.3 STANDARDS AWARE GUIDELINES (LAYOUTS)... 44

6 CUSTOM FUNCTIONS .. 46
6.1 OBJECTIVES ... 46
6.2 PROBLEM DEFINITION ... 47
6.3 STANDARDS AWARE GUIDELINES (CUSTOM FUNCTIONS) ... 48

6.3.1 Public Custom Functions .. 48
6.3.2 Private Custom Functions .. 48
6.3.3 Custom Function Parameters .. 49
6.3.4 Custom Function Naming Examples.. 50

November 1, 2005 FileMaker Development Conventions v1.0

- 8 -

6.3.5 Custom Functions Documentation... 50
6.3.6 Custom Function Formatting ... 51

6.4 ANCILLARY CONSIDERATIONS.. 51
7 SCRIPTS .. 52

7.1 OBJECTIVES ... 52
7.2 PROBLEM DEFINITION ... 52
7.3 STANDARDS AWARE GUIDELINES (SCRIPTS) ... 53

7.3.1 Script Names .. 53
7.3.2 Variables ... 53
7.3.3 Script Documentation ... 53

8 CALCULATIONS .. 55
8.1 OBJECTIVES ... 55
8.2 PROBLEM DEFINITION ... 55
8.3 STANDARDS AWARE GUIDELINES (CALCULATIONS)... 56

8.3.1 Variables ... 56
8.3.2 Calculation Block Header Commenting ... 56
8.3.3 In-Line Calculation Commenting.. 57
8.3.4 Calculation Formatting .. 57

8.3.4.1 Formatting Example #1 ..57
8.3.4.2 Formatting Example #2 ..59

8.4 ANCILLARY CONSIDERATIONS.. 62
9 VALUE LISTS.. 63

9.1 OBJECTIVES ... 63
9.2 PROBLEM DEFINITION ... 63
9.3 STANDARDS AWARE GUIDELINES (VALUE LISTS) .. 65

10 ACCOUNTS & SECURITY ... 66
10.1 OBJECTIVES ... 67
10.2 PROBLEM DEFINITION ... 67
10.3 STANDARDS AWARE GUIDELINES (SECURITY) .. 69

10.3.1 Privilege Sets ... 69
10.3.2 Internally Authenticated Account Names .. 69
10.3.3 Externally Authenticated Account Names (Group Names) .. 69

10.4 ANCILLARY CONSIDERATIONS:... 71
11 ADHERENCE .. 73

11.1 STANDARDS AWARE CONVENTION GUIDELINES ... 74
12 APPENDIX A - SQL RESERVED WORDS... 75
13 APPENDIX B - CHARACTER USAGE CHART.. 83
14 APPENDIX C – TERMINOLOGY & DEFINITIONS... 85
15 APPENDIX D - SYNTAX LEGEND.. 87

November 1, 2005 FileMaker Development Conventions v1.0

- 9 -

1 Files

The design needs and architecture of a solution will have impact on whether it’s made up of a
single file or multiple files. Designs may include a single file, which contains all the tables, or
separation architectures, which can split data and interface into different files. Solutions may
contain multiple utility files used for reporting or solution modules. In any case, a solution is
either a single file or multiple files. For each of these files you should consider a number of
factors during the naming process.

A character set should be used that will not encumber connectivity to the solution from
technologies such as ODBC, JDBC, and XML. Select a case and be consistent with it. In
conjunction with case, consider how words within the name will be separated. In addition,
consideration must be made to how the file name itself will be syntactically separated from any
meta-data, prefix or suffix, which is referred to as syntax separation throughout this document.
Selecting if one will use singular or plural names in the file name is yet another consideration to
keep in mind for a professional presentation. You need to determine how to group the
collection of files together as to give some visual representation that they are connected. Since
FileMaker 7, developers could build all-in-one solutions where every table is self-contained
within the same file. This is not always the best choice, for reasons beyond the scope of this
document. With solutions being made up of multiple files, it is important from an administrative
and evolutionary perspective to provide some convention that makes this very clear. Finally, you
need to consider cross platform considerations as well as some general recommendations
dealing with versioning.

1.1 Objectives:
• Recommended Character Set
• Recommended Case Convention
• Recommended Syntax Separation
• Recommended File Name Length
• Recommended Multi-file solution grouping
• Singular vs. Plural Guidelines
• Versioning Guidelines
• Extension Guidelines
• Issues with connectivity technologies (XML, ODBC, JDBC), including Reserved SQL

words

1.2 Problem Definition:
Recommended Character Set: There are some basic restrictions on the characters FileMaker
will allow. Additionally some characters can cause issues with external connectivity or data
exchange in some RDBMS (Relational Database Management Systems). As a developer you
need to be aware of the constraints of both FileMaker and any external system with which
your solutions will interact.

Recommended Case Convention: This recommendation is not to overcome a specific
problem but rather to make a consistent approach on how files are named. The objective is

November 1, 2005 FileMaker Development Conventions v1.0

- 10 -

to select a method and be consistent with it.

Recommended Syntax Separation: Syntax separation for file naming refers to the way one
differentiates any prefix and or suffix from the file name. It is common to see prefixes or
suffixes used to indicate a file is part of a group of files. They are also used to hold
identification characteristics. The objective is to provide a consistent and universally
recognized way to differentiate these leading/trailing meta-data elements from the file name
itself.

Versioning Guidelines: File references are maintained by file name. To avoid issues with file
references as versions change one should avoid using file names to represent the version of a
solution.

Extension Guidelines: On Windows the file will always get the ‘fpX’ extension. On the
Macintosh, the extension will default to using the extension but this optional. This becomes
an issue when attempting to host a file without an extension from a Windows server, where
upon starting the service looks for the .fpX extension to mount the file. The convention
should address a consistent approach to an extension that will work on all supported
platforms.

Singular vs. Plural Guidelines: The decision to utilize singular or collective nouns in place of
plural alternatives is noted here only to suggest that as a developer you make a decision on
which you will use and be consistent with it.

File Name Length Issues: The Operating System (OS) limits the file name length. However, it’s
not practical to have a 1000 character file name. However, one should consider a reasonable
file name length and be aware that some applications that you may need to use will have
various limitations. For example, a lengthy file name may have difficulty attaching to an email. If
you need to interact with other applications, be aware that file name length could be an issue.

Multi-file Solution Grouping: In any multi-file solution there are primary file(s) and secondary
files. A multi-file solution will have at least one primary file. The primary file(s) are ‘exposed’
to the end user. In a hosted solution these would be the file(s) the user is intended to select
from the host dialog box. In a locally based solution these are the file(s) the user is intended
to select directly from the OS or through a shortcut/alias. The support files are the
subordinate files or those not ‘exposed’ to the user for direct access to a solution. In a
hosted solution, these are the files that are used to support the function of the primary file. In
addition, there are architectures that separate user interface from the data layer, in which
case there are generally two separate files. Some designs place all of the files on the server,
split between client and server, and even across multiple servers. The objective here is to
recognize that files, wherever they are located, are part of the same solution or are
connected in some way. There are a number of reasons this matters. From an administrative
perspective it makes it much easier to manage and administer solutions for movement,
security, and backups. From a development perspective it provides a consistent method that
visually indicates a solution grouping.

External Connectivity: When interacting with any external RDBMS, you will need to be aware
of any file name conflicts with either characters or reserved words. Additionally, when
FileMaker files are accessed from other technologies, such as ODBC, JDBC, or XML you
must specify the filename.

November 1, 2005 FileMaker Development Conventions v1.0

- 11 -

1.3 Standards Aware Guidelines (Files):

1. Should use only the characters.

 Upper & Lower case aA – zZ
 Number 0,1,2,3,4,5,6,7,8,9
 Single and double underscores “_” “__”

2. Should NOT contain spaces.
3. Should NOT start with numbers.
4. Should NOT use file name to indicate versions.
5. Should NOT contain periods other than the single period used for the extension.
6. Should consistently use singular or plural names.
7. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (File Names)
lowerCamelCase myFileName
UpperCamelCase MyFileName
Single Underscore (lower Case) my_file_name
Single Underscore (Title Case) My_File_Name
Single Underscore (UPPER CASE) MY_FILE_NAME

8. Should contain the .fp7 (in lower case), regardless of platform. However, runtime solutions

can use any extension; take care to not utilize other registered extensions.

9. Single-File Solutions are files that comprise all the tables for the entire solution. There are

no additional recommendations.

10. Multi-File Solutions – Are a group of files that comprise all the tables for the entire solution.

In any multi-file solution there are primary files and support files. The primary goal of multi-
file solution grouping is to easily identify the files that comprise a solution. In many cases,
natural names can be used. For example, consider a solution with 4 files that are named as
follows:

 Helpdesk.fp7
 Tickets.fp7
 Reports.fp7
 Inventory.fp7

The naming does not clearly groups these files together. However, with some modifications
it would be easy to do so using natural names. However, there are cases where natural
names won’t work. Or you may want to take a more consistent approach to your naming,
regardless if a natural name works in some cases. Consider the same example using the
standard aware recommendation. This aids in a few areas. First, it clearly identifies the
primary file, secondly, it clearly identifies the support files, and lastly, it indicates the
collection of files as a group.

 Helpdesk_hd.fp7
 hd__Tickets.fp7
 hd__Reports.fp7
 hd__Inventory.fp7

November 1, 2005 FileMaker Development Conventions v1.0

- 12 -

10.1. Support File(s) - Each support file should contain a prefix, defined here as the Logical
Solution Identifier (LSI). The same LSI should be used for every support file in the
solution. The LSI should follow the general conventions and should always be separated
from the name with two underscores “__”. The use of two underscores aids in
identifying the LSI from the file name, which could use a single underscore as a word
separator. The LSI can be any length but should be consistent throughout your
solution.

Syntax (Support Files)
<<LSI>>[__]myFileName[.fpX]
See Syntax Legend for description of syntax.

• LSI (Logical Solution Identifier) – required, developer defined

Denotes files are logically connected

• “__” – required
Separates LSI from File Name

• myFileName –
Descriptive File Name

• .fpX – required
All files should contain the “.” (period) followed by fpX extension, where X is file
format version of FileMaker. Example : .fp7

10.2. Primary File(s) - You may elect to include the LSI in the primary file(s) as a prefix or
suffix. In either case the LSI should always be separated from the name with two
underscores “__”.

Syntax (Primary Files)
myFileName[__]{LSI}[.fpX]
{LSI}[__]myFileName[.fpX]
See Syntax Legend (Appendix D) for description of syntax.

• LSI “Prefix” (Logical Solution Identifier) – required, developer defined

Denotes files are logically connected

• “__” – required
Separates LSI from File Name

• myFileName –
Descriptive File Name

• LSI “Suffix” (Logical Solution Identifier) – required, developer defined
Denotes files are logically connected

• .fpX – required
All files should contain the “.” (period) followed by fpX extension, where X is file
format version of FileMaker. Example : .fp7

November 1, 2005 FileMaker Development Conventions v1.0

- 13 -

10.3. Examples

MySolution__xxx.fp7 - Primary File
xxx__MySupportFileA.fp7 - Support File
xxx__MySupportFileB.fp7 - Support File

xxxx__mySolution.fp7 - Primary File
xxxx__supportFileA.fp7 - Support File
xxxx__supportFileB.fp7 - Support File

My_Solution.fp7 - Primary File
ABC__my_solution.fp7 - Support File
ABC__support_file_b.fp7 - Support File

1.4 Ancillary Considerations:

 Borrowed Files: In some cases a solution may include a reference to another file that is
not individually associated with the specific solution. For example, an employee
directory might be used across many solutions. In these cases it is recommended to
treat the ‘borrowed’ file, as its own solution and not incorporate it as part of any
specific solution.

 Client File Storage: For clarification and organization you should consider placing
support files residing on a local drive in a sub-folder/directory under the primary file
location. In solutions that spread files on both the server and client, consider creating a
program folder and housing your client side primary files at the root of this folder with
all support files located in a sub-folder

.

2 Table Naming

Table names are not exposed to any major degree within the development environment.
Interacting directly with tables is generally limited to associating a table with a Table
Occurrence, found on the Relationship Graph. All data interactions are through the Table
Occurrence. It is important to make this distinction. While many of the dialog boxes will use the
term ‘Table’ you will actually be utilizing the ‘Table Occurrence’.

When selecting table names there are a number of factors to consider. As with all areas you
need to select a character set that will not encumber connectivity to the solutions from
technologies such as ODBC, JDBC, and XML. For the actual tables themselves this is not
directly important, due to the fact you will not reference tables directly. However, if you choose
to use the Source Table name in your Table Occurrence name, which is utilized for connectivity
calls and referenced through all interactions, you will need to be more selective. Obviously, not
every solution will utilize external connectivity, but as solutions evolve it is best to be prepared
and plan for the possibility.

For consistency and professionalism you need to select a case and be consistent with it. You will
need to select how the individual words within your table name will be separated.
Consideration must be made to how the table name itself will be syntactically separated from
any meta-data, prefix or suffix. Syntax separation for table names might be used if one chooses
to provide some functional or categorization within the name. For example, indicating within the
name a ‘join’ or ‘session’ table by using a prefix such as ‘j__TableName’ or ‘ses__table_name. In
both cases the syntax separator is a “__” double underscores. Be consistent with the use of
singular or plural names. Consider how some use of ‘white-space’ can help add some
organization to the Table tab. This can be very helpful when dealing with large numbers of
tables. Finally, while a table name can be 100 characters, this is not practical for a number of
reasons.

2.1 Objectives:
 Recommended Character Set
 Recommended Case Convention
 Plural vs. Singular Recommendations
 Table Name Length Recommendations
 Options for white space to address lack of organization
 Guidance for Table Type Naming (eg Join, Utility, System, Reference)

2.2 Problem Definition:
Recommended Character Set – Table names are somewhat protected from any character
related issues due to their limited usage throughout the application. However, some
consideration should be given to the characters used assuming that one may include the table
name in other areas, such as Table Occurrence names, where they are referenced.

Recommended Case Convention – Selecting a convention to use for Table Names must be
made with respect to how you will name Table Occurrences and Layouts. The decision on
whether to use UpperCamelCase, lowerCamelCase, or UPPERCASE for the most part is

FileMaker Development Conventions v1.0

- 15 -

simply a preference. However, one must consider a few factors. First, will you want to include
the Table Name in the Table Occurrence name? If so, you must consider the convention you
want to use for Table Occurrence names. Assuming you want to use all UPPERCASE, you
need to determine how you will separate words (a space, underscore, double underscores
etc). In addition, if you use underscores to separate words then what will be used to separate
any syntax you assign in Table Occurrences, Layouts, and other areas where you need to
include the Table Name. It’s important to make your selections for any section with respect
to where and how it will be referenced elsewhere.

Table Name Length Issues – A Table Name can be up to 100 characters in length. This
however, is not a practical limit in many cases. Referring back to Recommended Case
Convention, the Table Name might be included in the Table Occurrence Name, thus this
reference to the Source Table Name in the Table Occurrence name will add length to the
name of the Table Occurrence. Adding to this any additional convention employed at the
Table Occurrence can create a Table Occurrence name that may be longer than some
interface dialogs will display without some manipulation. The issue is raised here to emphasize
that putting some thought into the length of your Table Names must be made in respect to
other areas where conventions will be applied.

Singular vs. Plural Guidelines: The decision to utilize singular or collective nouns in place of
plural alternatives is noted here only to suggest that as a developer you make a decision on
which you will use and be consistent with it.

Table Categorization – Some developers like to include meta-data in the table name. In most
cases this categorizes the table as holding a specific type of data or indicating it performs a
specific role in the solution structure. A few examples are tables constructed for sessions,
reference, utility, and joins. Within FileMaker there is no capability to denote or comment
this type of categorization. Therefore, various developers include this meta-data as part of the
table name.

Spacing Tables – There are some practices amongst the community that utilize a technique
that creates “Spacing Tables” these tables hold no fields but are used to act a separators
between categories of table. Smaller solutions will not benefit from this technique, but as
solutions grow and include larger amounts of tables it can be very helpful.

2.3 Standards Aware Guidelines (Tables):

1. Should contain only the characters

 Upper & lower case aA-zZ
 Numbers 0,1,2,3,4,5,6,7,8,9
 Single and double underscores “_” “__”

2. Should NOT contain spaces
3. Should consistently use singular or plural table names.
4. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Table Names)
lowerCamelCase myTableName
UpperCamelCase MyTableName
Single Underscore (lower Case) my_table_name
Single Underscore (Title Case) My_Table_Name
Single Underscore (UPPER CASE) MY_TABLE_NAME

5. Should NOT use any FileMaker Reserved Words
6. Should NOT use any SQL Reserved words. See Appendix A. Additionally check the

documentation of the RDBMS.
7. Table Categorization - As mentioned in the problem definition, some developers like to

indicate the ‘type’ of table or the function of the table within the table name itself. If your
development practice needs to include this we recommend the following syntax.

8. Syntax: {function}[__]TableName
See Syntax Legend (Appendix D) for description of syntax.

 function – optional; developer defined

Provides a developer defined categorization for extending as necessary. As the
developer you are able to define the various categories. Be considerate of case, length,
and consistency when defining. You should document your selections following the
Adherence section guidelines in this document.

 “__” – required
A double underscores should be used to indicate the separation of function and Table
Name.

 TableName –
The descriptive name for your table.

2.4 Ancillary Considerations:

Usage of Spacing Tables: In solutions with a large number of tables it can be useful to add some
categorization to your table name list. Because, the development environment does not provide
this capability it’s up to the developer to devise a way to accomplish this. In the example below
we have a relatively small list of tables, however, it will do for our example. Consider a much
larger list and the value becomes more apparent. We have created tables with some indication
they are acting as headers for a category. The example shows Accounting, Communications, and
‘-Registration-‘. These are simply tables that have no fields. You may want to remove them from

FileMaker Development Conventions v1.0

- 17 -

the Relationship Graph, since they will never be used in your solution. But, as you can image, it
might make things a little more organized in those larger solutions. In our example we are using
a “-“ at the front and back. You can use whatever works for you. The point is to use something
that stands out for you. Be aware that FileMaker will give you a warning about certain
characters, but remember you’re not going to use these tables in any way.

Figure 1

3 Field Naming

Field names are an area where the topic of conventions is widely varied. Generally, there are
two categories of thought. Those who want to use “natural” names and those who utilize some
form of notation to expose some meta-data about the field. This notation is used to expose
information about the field, which is unavailable outside of the Define Database dialog. There
are many variants to the detail the notation takes. But the underlying idea is the same in all.

When selecting field names there are a number of factors to consider. As with all areas, one
needs to select a character set that will not encumber connectivity to the solutions from
technologies such as ODBC, JDBC, and XML. For consistency and professionalism you need to
select a case and be consistent with it. You will need to select how the individual words within
your field name will be separated. Again, consistency and professionalism are the objective.

Consideration must be made to how the field name itself will be syntactically separated from any
meta-data, prefix or suffix. The syntax separation for field names becomes very important due
to the variety of problem we are trying to address. One needs to consider field categorization,
indicating key/match fields, utility fields or developer fields. The objective is to clearly be able to
distinguish what is notation and what is not, without having to decipher code. This being said, if
you choose to use notation then there needs to be a universal understanding of this notation.
Therefore, the FDC provides two basic components to assist with this. First the convention
provides a common syntax that provides the ‘location’, where to put the parts. The most
common components should be noted and provided. And finally, within the syntax provide the
ability to ‘extend’ or customize it to a developer’s more specific needs.

Consideration must be given to where and why the components of the syntax are placed in
specific order of recommendation. You need to utilize singular or plural names and be
consistent. With field names it is important to look at ways to do field grouping, such as using
NameFirst, NameLast as opposed to FirstName and LastName. One of the issues considered
was to utilize the field name sort, rather than a custom sort order. While this is certainly not a
primary decision for how to name your fields, utilizing this built-in capability can reduce time
spent in organization activities. You should consider how some use of ‘white-space’ could help
add some organization to your field lists. This can be very helpful when dealing with large
numbers of fields, especially if you prefer a manual sorting method for field listing.

The FDC realizes that your development practices may not fit with what is outlined. It really
comes down to a choice at this point. If you’re going to use some notation, then give the
recommendation serious consideration.

3.1 Objectives:
 Recommended Character Set
 Recommended Case Convention
 Field Name Length Issues
 Field-naming options for lack of field meta-data in the development environment.
 Limitations that prevent the ‘hiding’ of utility fields from user interface which addresses

limitation of development environment.
 Field and meta-data separation
 Options for white space usage.
 Options for field grouping and readability

FileMaker Development Conventions v1.0

- 19 -

3.2 Problem Definition:

Recommended Character Set: The usage of improper characters can cause difficulties in a
number of areas. Most important are the usage of valid characters within calculations.
Developers should take care to utilize characters that do not conflict with FileMaker
calculations, avoid issues with variables, and be aware of any characters that may present a
problem with exchanging data with Relational Database Management Systems (RDBMS).

Recommended Case Convention: The decision of how to separate words within field names
has an impact of overall consistency throughout conventions. For example, choosing to
separate individual words with an “_” (underscore) will make it difficult to determine the field
name from any prefix or suffix that one might choose to utilize for the representation of field
meta-data. One of the most common uses of this is the use of “g_” to precede the field name.

Field Name Length: A FileMaker field can be up to 100 characters in length. This however, is
not a practical limit in many cases. With the release of version 8, most dialog boxes will have
no difficulty in displaying the full name. However, Sort, Export, and Edit Find Request are
limited. Sort is limited to 20 characters on OS X and 26 characters on Windows. Export is
limited to 30 on OS X and 28 characters on Windows. Edit Find Requests is limited to 26
characters on OS X and 27 on Windows. These numbers vary depending on the width of the
characters. For example “8” is wider than “1”. The numbers provided are based on a string
of full width characters. The FDC does not make any recommendations on length but
provides these limitsss for reference.

Lack of field meta-data within development environment: The field is one of the primary
programmable objects with which a developer works. Setting aside a remarkable memory, it
is difficult, if not impossible to know the meta-data of a field without opening Define
Database. What is its data type? What is dependent on it? How does it store data? How will it
behave in a script? This information is not readily available. Whether you agree that this is a
challenge or not determines how you will approach it with a naming convention. Assuming,
one wants to expose this information at the field name level, considerations on how to
accomplish this ought to be part of the convention.

Inability to hide utility fields: “Utility” fields are fields defined to store transitory data or
information that is not generally exposed to the end user. In any case, the challenge to the
developer is that they cannot prevent end users from seeing these fields in all fields presenting
dialog boxes. While FileMaker 8 provides the functionality to list only the fields on a layout
for exporting and sorting to some degree, there are many other areas where all the fields will
be listed. In this case the inability to hide the fields creates a situation where a developer may
want to list these fields out-of-the-way. In most cases this ends up being the bottom of the
field list. Since version 7, FileMaker uses Unicode sort order for field names. Other than
manually sorting field names, which can be cumbersome and time consuming, the only option
is to establish a naming convention, which moves utility fields to the bottom of the list. Due
to Unicode sorting order the character “z”, “zz”, or a Unicode character that sorts these field
to the bottom is generally agreed to be the best way to ensure a field is listed last. As a
developer you must decide if this is important to you or not.

FileMaker Development Conventions v1.0

- 20 -

Field and meta-data separation syntax: There needs to be a clear understanding for the
current and future developers as well as the end-user on what separates the field name from
the meta-data/notation. In addition, there needs to be a clear and consistent designation
between what is notation and what is the field name.

3.3 Standards Aware Guidelines (Fields):

The FDC has elected to recognize three (3) broad categories for fields. These are General
Fields, Key Fields, and Utility Fields.

3.3.1 General Fields
A General Field is categorized as those fields used for general data storage.

1. Should contain only the characters

 Upper & lower case: a-z or A-Z
 Numbers: 0,1,2,3,4,5,6,7,8,9
 Single and Double underscores “_” “__”

2. Should NOT contain spaces
3. Should NOT start with numbers
4. Should be consistent with usage of singular or plural names
5. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Privilege Sets)
lowerCamelCase myFieldName
UpperCamelCase MyFieldName
Single Underscore (lower Case) my_field_name
Single Underscore (Title Case) My_Field_Name
Single Underscore (UPPER CASE) MY_FIELD_NAME

6. Should sort field list by field name
7. Depending on the character or characters you use as your “Utility Field” indicator you

should reserve this character by not starting any field with that letter. In the utility fields
area the letter “z” and “zz” as well as other Unicode characters that will put utility fields to
the bottom of the field list, assuming fields are sorted by name.

8. Should use Field Grouping when possible. Examples include:
 Name_First
 Name_Last
 AddressCity
 AddressState
 AddressPostalCode
 passportNumber
 passportIssuingCountry
 passportExpirationDate
 passportName

9. Derived or Calculated Fields determined by the developer to not exist as “Utility” fields but
want to include notation should follow the recommendations for “Utility” fields as a suffix.

FileMaker Development Conventions v1.0

- 21 -

For example, InvoiceTotal is calculated, however, it is not a field you may want to ‘hide”
from the user. However, you may want to include some notation. In such a case you would
name the field InvoiceTotal__lcn. Indicating the field is locally stored, calculated, of number
type result. See utility naming for additional information.

3.3.2 Key/Match Fields
FileMaker does not enforce or mandate many of the relational integrity constraints present in
SQL-based, Relational Database Management Systems. For Example, it does not force you to
create a primary key for a table. There is no indication, visually or contextually, within the
application that a field is a key/match field. In most cases it is desirable or necessary to utilize
keys or match fields within your solutions. You can utilize some notation to specifically address
identification of key fields.

Should you choose to utilize some notation for key fields, the following syntax is the
recommendation for the standards aware approach.

Key/Match Field Syntax Directives:

 Provide a universally available, understood, and consistent map to key meta-data
notation.
• Identify Key/Match field
• Identify Function of the Key/Match field
• Identify Key/Match field storage
• Identify Key/Match field data type

 Sort the Key/Match fields to the top of the fields list while maintaining a field sort by
name (Alphabetical Sort Order). This reduces manual sorting by developers and
presents expected order by users of the solution.

 Utilize notation characters that are either generally acceptable (popular), such as “p” for
primary key and “f” for foreign key, or align with the FileMaker development
environment.

1. Should contain only the characters
 Upper & Lower Case: a-z or A-Z
 Numeric: 0,1,2,3,4,5,6,7,8,9
 Single and double underscores “_” “__”

2. Should NOT contain spaces
3. Should NOT start with a number
4. Should be consistent with usage of singular or plural names
5. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Field Names)
lowerCamelCase myFieldName
UpperCamelCase MyFieldName
Single Underscore (lower Case) my_field_name
Single Underscore (Title Case) My_Field_Name
Single Underscore (UPPER CASE) MY_FIELD_NAME

FileMaker Development Conventions v1.0

- 22 -

6. Syntax: [_k]<function>(storage)(type)[__]DescriptiveName
See Syntax Legend for description of syntax.

 “_” – required

Single underscore will place keys at the top in all dialogs where fields are listed and the
relationship graph.

 k - lower case; required
Denotes the field as a key/Match Field

 function - lower case; required; uses provided values if used
Denotes key field category and/or function it will serve.
• p – Primary Key
• f – Foreign Key
• a – Alternate Key
• c – Compound / Concatenated / Calculated Key
• m – Multi-Line Key

 storage - lower case; optional; uses provided values if used

Denotes field storage
• l = Locally Stored (lower case “L”)
• g = Globally Stored

 type - lower case; optional; uses provided values if used

Denotes field type
• t = Text
• n = Number
• d = Date
• i = Time
• m = Time Stamp

 “__” – required

Double underscore should be used to separate the key syntax from the Descriptive
Name for the field.

 DescriptiveName- Selected Case
Key Field Descriptive Name

 Examples
Full format using all optional meta-data Minimal format using no optional meta-data
_kplt__InvoiceID _kp_InvoiceID
_kcgt__SelectedParticipants _kc_SelectedParticipants
_kflt__CustomerId _kf__CustomerId
_kmgt__SelectedDaysView _km__SelectedDaysView
_kflt__lnvoice_line_item _kf__lnvoice_line_item

FileMaker Development Conventions v1.0

- 23 -

3.3.3 Utility Fields
The Utility field naming is designed to create a consistent way to accommodate the various
needs of developers and address some of the most common issues with field naming for those
fields that are generally not desirable to make available to the end user.

Utility Field Directives:

 Provide a universally available, understood, and consistent map to utility field meta-data
notation.

 Identification of Utility field
 Identification of function of a Utility field that is customizable
 Identify Utility field storage
 Identify Utility field data type
 Identify Utility field as a repeating field
 Sort utility fields to the bottom of the fields list while maintaining a field sort by name

(Alphabetical Sort Order). This reduces manual sorting by developers and places these
fields where they are out of the way for the user.

1. Should contain only the characters

 Upper & Lower Case: a-z/A-Z
 Numeric: 0,1,2,3,4,5,6,7,8,9
 Single and Double underscores “_” “__”

2. Should NOT contain spaces
3. Should NOT start with numbers
4. Should be consistent with usage of Singular or Plural names
5. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Privilege Sets)
lowerCamelCase myFieldName
UpperCamelCase MyFieldName
Single Underscore (lower Case) my_field_name
Single Underscore (Title Case) My_Field_Name
Single Underscore (UPPER CASE) MY_FIELD_NAME

6. Syntax: <zz>{function}[__]DescriptiveName[__](storage)(type)(repetition)

See Syntax Legend for description of syntax.

 “zz” or Unicode character that sorts to bottom – required

Indicates the field as a developer key and sorts to bottom of all dialog boxes where field
names are present.

 function – lowercase; optional; developer defined
Provides a developer-defined categorization for extending as necessary. As the
developer you are able to define the various categories. Be considerate of case, length,
and consistency when defining. You should document your selections following the
Adherence section guidelines in this document.

 “__” – required
Double underscores denotes separation of prefix from Descriptive Name

FileMaker Development Conventions v1.0

- 24 -

 DescriptiveName
Developer selected desired name. Follows general field guidelines.

 “__” – required
Double underscores will be used to indicate the end of the DescriptiveName and
beginning of suffix notation.

 storage - lower case; required; uses provided values if used
Used to denote the field storage
• l = Locally Stored (lowercase L)
• g = Globally Stored

 type - lower case; required; uses provided values if used

Indicates the data type used or returned.
• Non-Calculated Result Types

o xt = Text
o xn = Number
o xd = Date
o xi = Time
o xm = Time Stamp
o xr = Container

• Calculated Result Types

o ct = Text
o cn = Number
o cd = Date
o ci = Time
o cm = Time Stamp
o cr = Container

• Summary Result Type

o xs = Summary

• repetition - lower case; required; uses provided values if used
Indicates the data is stored with repetitions

o p = repetitions

3.3.4 Field Notation Reference

Field Notation Reference
 Text Number Date Time Time Stamp Container
Keys (fong form: Using all meta-data)
Key:Primary _kplt _kpln _kpld _kpli _kplm N/A
Key:Foreign _kflt _kfln _kfld _kfli _kflm N/A
Key:Alternate _kalt _kaln _kald _kali _kalm N/A
Key:Compound _kclt _kcln _kcld _kclt _kclm N/A
Key:Multiline _kmlt _kmln _kmld _kmli _kmlm N/A
Repeating Keys
(Add “p” to end of notation,

p p p p p N/A

FileMaker Development Conventions v1.0

- 25 -

in lowercase)
Utility Fields / General & Calculated Fields (Full form: Using all meta-data)
General (local Storage) __lxt __lxn __lxd __lxi __lxm __lxr
General (Global Storage) __gxt __gxn __gxd __gxi __gxm __gxr
Calculated (local Storage) __lct __lcn __lcd __lci __lcm __lcr
Calculated (Global Storage) __gct __gcn __gcd __gci __gcm __gcr
Repeating
(Add “p” to end of notation,
in lowercase)

p p p p p p

Summary (Local Storage) N/A __lxs N/A N/A N/A N/A

3.4 Ancillary Considerations

Field Separators: Many developers utilize a ‘non-functional’ field to act as a separator in the field
list. Spacing in long lists of items makes them more manageable. It allows for some kind of
division, where the development environment lacks this capability. When utilizing this technique
it is recommended to use a field type of number and set it for global storage to reduce storage
size.

4 Table Occurrences

Since FileMaker 7 and the advent of the Relationships Graph, the product has extended its
capabilities to better support large and complex systems. However, the Relationships Graph can
become cumbersome and unwieldy when representing complex applications. For example, a
complex system may have the same Source table represented multiple times on the graph.
Couple this with the requirement that there can be at most one relational path between any
two Table Occurrences. The graph can become large and challenging to navigate. While the
Relationships Graph gives the developer a Graphical User Interface (GUI) for working with
relationships, it does not offer the ability to logically group or name groups of Table
Occurrences. This makes it difficult to know which Table Occurrence to work with when
selecting from a pop-up list. All Table Occurrences are listed in alphabetical order in the list and
lack any means of logical grouping. There are numerous places where the need to select a Table
Occurrence exists, such as placing fields on a layout or selecting a field in the calculation dialog.
In these situations, there is no way to see a Table Occurrence's underlying source table or its
context in the Relationships Graph. This limitation prompts us to look for a naming convention
that will embed the source and contextual description in the Table Occurrence name. The
proposed naming conventions are for indicating source AND context.

It is very clear that any attempt to define a naming convention will be closely tied to an
individual developer’s methodology for representing Table Occurrences. Thus, the FDC has
elected to illustrate several methods for building Relationship Graphs, and their supporting
naming conventions, as a resource to draw upon for your solutions, rather than propose a single
convention that might favor a particular development method.

Ultimately, regardless of the specific method used, a clear and consistent understanding of the
specifics of your solution should be recognizable to another developer with a minimal amount of
effort. Leveraging a generalized approach that can be further refined is a solid first step. In each
of the methods examined you will find many similarities. They all share a similar format. Each is
grouped with a prefix. Following this is the Source Table Name. Lastly there is an optional
Descriptive Name where additional context in the name is beneficial.

4.1 Objectives:
 Terminology

• Define Table
• Define Table Occurrence
• Define Source Table/Base Table
• Define Functional Table Occurrence Group (FTOG)
• Define Primary Table Occurrence (PTO)

 Recommended Character Set
 Recommended Case Convention
 Table Occurrence Length issues
 Provide various mechanisms to address the challenge of relationship graph context

when selecting a Table Occurrence while working with calculations, adding fields to a
layout, or defining layout context.

 Provide various mechanisms to address the difficulty in grouping Table Occurrences for
the purpose of exposure to the development environment.

FileMaker Development Conventions v1.0

- 27 -

 Provide a method to address the dependency on a Primary Table Occurrence of
calculations that are self-contained.

 Provide various methods to overcome organizational challenges of Table Occurrences.
 Issues with connectivity technologies (XML, ODBC, JDBC), including reserved SQL

words.

4.2 Problem Description:

Definitions: For the purposes of this document and a universal understanding of terms we
provide the following definitions.

 Table - A collection of data pertaining to an entity, such as customers or stock prices. A
database file contains one or more tables, which consist of fields and records. When
you create a new table, a visual representation, or Table Occurrence, of the table
appears in the Relationships Graph. You can specify multiple occurrences (with unique
names) of the same table in order to work with complex relationships in the graph.

 Table Occurrence: A Table Occurrence refers to an instance of a table on the
Relationships Graph. Keep in mind that all interactions with a table throughout the
development environment will interact with Table Occurrences. This is the one and
only way to ‘address’ a table and its contents.

 Source Table: A Table Occurrence is associated with a Table. The Source Table refers

to the Table with which the Table Occurrence is associated. In the example below, a
Table Occurrence named “AdmissionInterface|Classes|ClassList” is associated with a
Source Table named Classes. The Source Table will also be referred to as the Source
Table Name.

Figure 2

 Primary Table Occurrence: PTO is a name for a special Table Occurrence. The PTO

serves as the designated Table Occurrence that will be used when creating calculations
that are ‘internally referenced’, those calculations that are derived from data contained
solely in the same table, not making use of related data.

 Spacing Table: A name for a technique used to create ‘label’ or ‘separator’ tables within

the Define Database dialog. This technique uses tables that contain no fields for the
purpose of grouping and categorizing tables and Table Occurrences.

Recommended Character Set: There are some basic restrictions on the characters
FileMaker will allow. Additionally some characters can cause issues with external

FileMaker Development Conventions v1.0

- 28 -

connectivity or data exchange with some RDBMS (Relational Database Management
Systems). As a developer you need to be aware of the constraints of both FileMaker and any
external system with which your solutions will interact.

Recommended Case Convention: This recommendation does not overcome a specific
problem but rather encourages a consistent approach in how Table Occurrences are
named. The objective is to select a method and be consistent with it.

Recommended Syntax Separation: Syntax separation for Table Occurrence naming refers to
the way one differentiates any prefix and or suffix (meta-data) from the remainder of the
Table Occurrence name. It is common to see prefixes or suffixes used to indicate certain
components of the name. They are also used to hold identification characteristics. The
objective is to provide a consistent and universally recognized way to differentiate these
leading/trailing meta-data elements.

Lack of context to relationship graph when selecting a Table Occurrence while working
with calculations, adding fields to a layout, or defining layout context: Outside of the
Relationships Graph, for example when selecting the Table Occurrence (referred to as
“TO” or “TOs”) from a list, you are presented with a long list of TO names to use. This list
lacks any grouping or order unless your naming convention supplies the context.

Dependency on a Primary Table Occurrence on calculations that are self-contained: When
creating calculations you must select the context from which the calculation will evaluate.
For fields where the calculation result is derived without referencing related data, there is
some consideration that these calculations should always be based on the same context.

Lack of Table Occurrence Organization Capabilities: Regardless of what method is used to
create the Relationship Graph, it is generally agreed that a number of TOs often work
together to provide some function, irrespective of the connectivity to other TOs on the
graph. With this understanding it only makes sense that one would want to organize this
group in some way. This capability does not exist unless your methodology and naming
convention provides it.

4.3 Standards Aware General Guidelines (Table Occurrences):
1. Should use only the characters

 Upper & lower case: aA or zZ
 Numbers: 0,1,2,3,4,5,6,7,8,9
 Single and double underscores “_” “__”

2. Does NOT contain spaces
3. Does NOT start with a number
4. Does NOT contain periods
5. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Table Occurrences)
lowerCamelCase myTableOccurrenceName
UpperCamelCase MyTableOccurrenceName
Single Underscore (lower Case) my_table_occurrence_name
Single Underscore (Title Case) My_Table_Occurrence_Name
Single Underscore (UPPER CASE) MY_TABLE_OCCURRENCE_NAME

FileMaker Development Conventions v1.0

- 29 -

4.3.1 Functional Spider Grouping (FSG) Method
This first approach to organizing table occurrences is to name each with a prefix indicating its
function. The image of the graph once this method is in place is much like a spider or web and
thus the term spider is used to represent this approach. Note that this is not the only method
of designing functional groupings (see the following example of Functional Table Occurrence
Groups).

The main idea with the functional grouping is that you are not representing table occurrences by
name or by relationship but rather more by functional groupings. The types of functions that
can exist are unlimited and will depend on the demands of your solution and your
implementation. (scripts, value lists, portals, etc.)

Figure 3

In this method, functional groups are identified with a “functional prefix”. In this case it is a two-
letter prefix. Color can also be used to help locate the different functional groups. And new to
FileMaker 8 is the ability to also attach notes to the graph. In this case we added a note to
describe what each off the two-letter functional groups represents.

FileMaker Development Conventions v1.0

- 30 -

The intent here is to not describe in too much detail how this Functional Spider Group (FSG)
method works but rather to introduce the main concepts.

One of the functional groups in the graph is represented with a two-letter prefix labeled FO,
which we will use for the word “Focus”. All the tables in the graph that have this two-letter
prefix will be found grouped together when you need to enter information related to the
record that has focus.

Because there would be so many tables in the graph with this approach, a separator table is
used to also provide a way for each of these functional groupings to show up all together. These
spacing tables also share the same two-letter prefix and when connected to the FSG they allow
for a separation and grouping to help in locating the function you want to work with.

Figure 4

The above is an example of selecting a field when on a session layout. The functional separators
make it easy to locate a particular functional group in the popup list of Table Occurrences.

4.3.1.1 Functional Spider Grouping Pros
 Reduces number of Table Occurrences
 Provides organization by function
 Works well for small-medium sized solutions. (Most solutions are in this category.)

FileMaker Development Conventions v1.0

- 31 -

 Can work with large solutions with the caveat that it’s dependent upon the number of
functional needs. The more functional needs the system must serve, the less attractive
this organizational method becomes.

 Supports bi-directional relational model by allowing layouts to use any TOG within the
FSG. This reduces the number of TOs needed by not restricting layout exposure to only
one TO in the FSG.

 Provides functional grouping within Table Occurrence menus outside of the
Relationships Graph in a reasonably grouped order.

4.3.1.2 Functional Spider Grouping Cons
 More attractive for “portal-driven” methods. Does not work well with more “open”

solutions.
 Naming does not attempt to expose structure outside of the graph.
 More difficult to locate the specific TOs on the Relationships Graph due to the ability to

base a layout on any TO within the FSG.

4.3.1.3 Functional Spider Grouping: Standards Aware Guidelines

1. Syntax: <<FunctionalPrefix>>[__]DescriptiveName

See Syntax Legend for description of syntax.

• FunctionalPrefix – required; developer defined

Provides the mechanism to represent a logical separation of interconnected Table
Occurrences. This could be an abbreviation or functional name.

• DescriptiveName -
Provides the mechanism to give meaning to the Table Occurrence.

• “__” - required
The usage of a “__” double underscore is the recommended separator character.
This allows the usage of underscores within Source Table names and Logical Table
Occurrence Names while still providing readability and parsing capabilities.

4.3.2 Functional Table Occurrence Groups (FTOG) Method
Another approach is “Functional Table Occurrence Grouping” (FTOG), where the Relationship
Graph has multiple ‘mini’ functional graphs, each one consisting of only the Table Occurrences
that provide the functionality for that cluster or FTOG. One of the key differentiators for the
FTOG method is that it breaks down the various components or functions of a solution into
smaller sub-sets. This provides, in some cases, a more manageable graph. It also reduces the
number of Table Occurrences to search within the Relationship Graph. For any given function
you need only refer to the associated FTOG group. Each FTOG will have only those Table
Occurrences relevant to the functionality required.

With any variant of the FTOG method one of the objectives is to provide a meaningful name to
what purpose this group or cluster of Table Occurrences is providing. The meaning of the
grouping can be varied but the importance is that the group or cluster provides functionality and
needs to have a name associated with this functionality so that it may be understood or at least
recognized outside of the Relationship Graph. Figure 2 shows a Relationships Graph organized
using the FTOG method. Each of these FTOGs represents some functionality that is
independent from the other FTOG groups. Using The FileMaker 8 text tool we can place notes
around each Functional Group for some additional in-graph understanding of the FTOG.

Figure 5

4.3.2.1 Functional Table Occurrence Grouping (FTOG) Pros
 Reduces complexity of Relationship Graph
 Reduces number of Table Occurrences
 Provides visual and list organization by functionality
 Works well for small - medium sized solutions. (ost solutions are in this category.)
 Can work with large solutions with the caveat that it’s dependent upon the number of

functional needs. The more functional needs the less attractive it becomes.
 Related tables within a FTOG are fairly limited, and they are grouped into sorted

alphabetical order within the FTOG.

FileMaker Development Conventions v1.0

- 33 -

 Supports bi-directional relational model by allowing layouts to use any TOG within the
FTOG. This reduces the number of TOs needed by not restricting layout exposure to
only one TO in the FTOG.

 Supports a wide range of development methodologies: those under highly scripted
“portal-driven” solutions and more open based solutions using FileMaker native
controls.

 Provides functional grouping to Table Occurrence menus outside of the Relationships
Graph in a reasonably grouped order.

4.3.2.2 Functional Table Occurrence Grouping (FTOG) Cons
 Naming is considered to be more stringent.
 Naming does not attempt to expose structure or meaning outside of the graph.
 More difficult to locate the specific TO on the Relationships Graph due to the ability to

base a layout on any TO within the FTOG.

4.3.2.3 Functional Table Occurrence Groups: Standards Aware Guidelines

1. Syntax:
<<FunctionalTableOccurrenceGroup>>[__]<SourceTableName>[__]DescriptiveName
See Syntax Legend for description of syntax.

 FunctionalTableOccurrenceGroup (FTOG) – required; developer defined

Provides the mechanism to name a collection of Table Occurrences. This could be an
abbreviation or functional name. For example, one could use FD at the front of the
collection of Table Occurrences that represent the Functional Dependency group.
Another example may be ‘UserInterface’ to indicate the collection of Table
Occurrences that depict the group which provides the interface.

 “__” – required
The usage of a “__” double underscore is the recommended character. This allows the
usage of underscores within Source Table names and Logical Table Occurrence Names
while still providing readability and parsing capabilities.

 SourceTableName – required, uses source table name
Includes the Source Table name in the Table Occurrence name. This provides a visual
and programmatic indicator outside of the Relationship Graph for the underlying table.
Given that the Get (LayoutTableName) function returns the Table Occurrence name
and not the Source Table Name, and there is no other way to get the Source Table
name. In order to programmatically obtain the Source Table Name it needs to be
included in the Table Occurrence Name.

 “__” – required
 The usage of “__” double underscores is the recommended character. This allows the
usage of underscores within Source Table names and Logical Table Occurrence Names
while still providing readability and parsing capabilities.

FileMaker Development Conventions v1.0

- 34 -

 DescriptiveName -
Provides the mechanism to give meaning to the Table Occurrence.

 Examples:
• FD__Customer__AllCustomers
• Interface__Invoice__LateInvoices
• Interface__Invoice__Current_Invoices
• Synchronization__Version__Host_Stored_Versions

2. Functional Table Occurrence Group Separation: Locating a Table Occurrence within the

calculation dialog box (while placing a field on a layout or assigning it to a layout) can be
difficult. You must select from a drop-down list that lacks any categorization. For example,
suppose your solution has 200 Table Occurrences. To perform any of the tasks mentioned
above, one would have to navigate through this lengthy list. A TOG convention will help to
some degree by listing all the TOGs together in alphabetical order. In the following example
we only have 13 Table Occurrences, however, consider a much longer list.

Figure 6

The following shows an example where each FTOG has a header that easily differentiates
each TOG. In a long list of TOGs this can be very useful.

FileMaker Development Conventions v1.0

- 35 -

Figure 7

This method requires you to either create a spacing table or use existing Table Occurrences
as headers for each functional group. In our example we create a table named 10 hyphens (-
---------). The name is not important, nor is the creation of a specific table.

Figure 8

FileMaker Development Conventions v1.0

- 36 -

When the Spacing Table is created, its automatically created Table Occurrence will be
placed on the Relationships Graph. Add Table Occurrences, using this table as the Source
Table, and provide a name that is used to separate each of the functional groups in the drop
down list. Our example listed in figure 7 has three of these.

 FDG__________Functional Dependency_________
 PTO__________Primary Table Occurrances__________
 TeacherUserInterface__________Teacher UI__________

In a large list of Table Occurrences this will assist you in finding the Table Occurrence you
are looking for by providing headers to each FTOG.

4.3.3 Anchor Buoy / Hierarchical Table Occurrence Grouping (HTOG) Method
This method of Relationship Graph design takes a collection of Table Occurrences (TOs) that
are connected by relationship lines, and adds structure and rules.

In the September 2005 issue of FileMaker Advisor, Roger Jacques of Soliant Consulting, explores
this method in an article entitled “Managing the FileMaker Pro 7 Relationship Graph,” It is
impossible to provide the full details of this method in this document. However, I will use his
description as the basis for some examples. He provides the following description of the
hierarchical/Anchor model.

“The hierarchical nature of the Anchor Method is based on a pattern. Every TOG has an anchor
TO and that TO is serviced with related data via any number of threads of buoy TOs. This
hierarchical model lends itself to the requirement of only one path between any two TOs. After
you start a thread, you might add whatever TOs are required to retrieve related data. Here’s a
rule I strictly follow: Don’t join two TOGs with a relationship line and FileMaker will not let you
make a circular reference.”

“The anchor TO is always the farthest to the left and the supporting buoy TOs cascade off to
the right. You can add TOs as you need them, providing access to related data for the anchor
TO. In practice, threads rarely get longer than four of five levels deep.”

“Note that both threads use the same tables, but for different purposes. In this example the
lower thread is based on the primary and foreign key relationships for the three entities, and
lists all roles and actors for the current move. The upper thread lets users select a portal row
for the roles then see details for that role and actor in related fields.”

In this method, layouts may only be based on the “anchor” (leftmost) TO. The “buoy” TOs
exists solely to feed data to any layouts or logic based on the anchor.

4.3.3.1 Anchor Buoy / (HTOG) Pros
 Significantly reduces complexity of graph
 Allows the relational structure of the system to be understood, to some degree, outside

of the graph.
 Naming is automatic and does not require a lot of thinking or discretion, except for the

optional relationship meta-data (Descriptive Name).
 TOGs are mostly layout-based which makes it easy to locate TOs on the Relationships

Graph.
 Works very well for large solutions

FileMaker Development Conventions v1.0

- 38 -

 Provides functional grouping to Table Occurrence menus outside of the Relationships
Graph in a hierarchical order.

 Supports and is unaffected by the “single-path” rule of the Relationship Graph.
 Related tables within a FTOG are fairly limited, and they are grouped into sorted

alphabetical order within the FTOG.
 Support a wide range of development methodologies: those under highly scripted

“portal-driven” solutions and more open based solutions using FileMaker native
controls.

 Is accessible to a wide range of developer, yet robust enough for professionals.

4.3.3.2 Anchor Buoy / (HTOG) Cons
 Significantly increases the number of TOs.
 Does not support bi-directional relation model inherently. The restriction of limiting

layouts to only the anchor requires you to create another Anchor Buoy/TOG to
express right-to-left data to the layout.

4.3.3.3 Anchor Buoy / HTOG Standards Aware Guidelines

1. Individual words should consistently be separated using the method stated for each
section of the syntax.
Recommended Word Separation Methods (Table Occurrences: Anchor Buoy)
Anchors
AnchorTOGHeaderName UPPERCASE
SourceTableName LowerCamelCase *Should Match Table

Name Case
Buoys
AnchorTOGHeaderName lowerCamelCase
SourceTableNameAbbreviation UPPERCASE Abbreviation suggested

to minimize length
SourceTableName LowerCamelCase *Should Match Table

Name Case
DescriptiveName lowerCamelCase

UpperCamelCase

2. Anchor Syntax

<<AnchorTOGHeaderName>>[__]<SourceTableName>
See Syntax Legend for description of syntax.

AnchorTOGHeaderName – required; developer defined
Identifies the Table Occurrence Group (TOG). Every Table Occurrence ‘connected’
to this anchor will have the same Anchor TOG Header Name.

“__” – required
Double underscores separates the AnchorTOGHeaderName from the Source
Table Name.

SourceTableName –

FileMaker Development Conventions v1.0

- 39 -

Indicates the Table Associated with the Table Occurrence.

3. Buoy Syntax

<<AnchorTOGHeaderName>>[_]<<SourceTableNameAbbreviation>>[__]<Sourc
eTableName>[__]DescriptiveName
See Syntax Legend for description of syntax.

AnchorTOGHeaderName – required; used defined value for anchor
Identifies the Table Occurrence Group (TOG) every Table Occurrence ‘connected’
to the anchor will have the same Anchor TOG Header Name.

“_” – required
Single underscore separates the AnchorTOGHeaderName from the first Source
Table Abbreviation Name.

SourceTableNameAbbreviation – required; developer defined
Each SourceTableNameAbbreviation is separated by a single “_” underscore.

“__” – required
Double underscores separates the final SourceTableNameAbbreviation from the
Source Table Name

SourceTableName – required; intended value of the actual Source Table Name
Indicates the Table Associated with the Table Occurrence.

“__” – required
Double underscores separates the Source Table Name from the Descriptive Name.

Descriptive Name –
In Buoy Table Occurrences, the Descriptive Name is optional, but can provide a
natural description of the TO or perhaps some meta-data indicating what the
relationship is based upon. For example, a Descriptive Name of “CompanyId” would
indicate the join is based on the CompanyID field.

Examples:

Figure 9

 Anchor STUD__Student – This is an anchor TOG, because it is always the left-most TO

and it only lists the Source Table. The name also tells us that it is based on the Source
Table “Student”.

FileMaker Development Conventions v1.0

- 40 -

 stud_reg_SEC__Section – This buoy TO is part of the “stud” Anchor Group. It is the
third TO connected to “reg” which is connected to the anchor “stud”. It is based on the
Source Table “Section”. There is no Descriptive Name.

 stud_reg_sec_off__COURSE__CourseIdentificaiton – This buoy TO is part of the
“stud” Anchor Group. It is 5 levels deep with a Source Table of “Course”. It is
connected to “off” (CourseOffering), “sec” (Section), “reg” (Registration), then the
anchor “stud” (Student). It also contains the optional use of Descriptive Name with
CourseIdentification.

4.4 Ancillary Considerations

Primary Table Occurrence: Regardless of the Relationship Graph methodology used, when
creating calculations you must select the context from which the calculation will evaluate. For
those fields where the calculation result is derived without referencing related data, these
"internal" calculations should always be based on the same context. The concept of a special
Table Occurrence called the Primary Table Occurrence or PTO, can assist in this concern. The
PTO always serves as the designated Table Occurrence that will be used when creating internal
calculations. Figure 8 demonstrates the usage of the PTO for the source table Employees.

Figure 10

By utilizing a PTO for each internal calculation you will always know that the PTO provides the
context in which to evaluate the calculation. As a solution evolves you will not have to
remember which series of Table Occurrences are used to evaluate these internal calculations.

FileMaker Development Conventions v1.0

- 41 -

Removing other Table Occurrences will have no impact on the calculations using the PTO as
the evaluation context.

Syntax:
[PTO][__]<SourceTableName>
Recommended: [PTO__]<<SourceTableName>>
See Syntax Legend for description of syntax.

• (PTO) PrimaryTableOccurrenceDesignator – required; developer defined;
Can be defined by developer. The FDC recommends the use of “PTO.

• “__” – required
Double underscores serves the purpose of separating the PTO from the Source Table
Name.

• SourceTableName –
The name of the associated Table to the Table Occurrence.

5 Layouts

One of the first considerations on how to name layouts is primarily driven by who will use the
name. In solutions where the end-user directly selects the layout from the layout pop-up menu
in the status area it is important to provide a name that is self-describing and generally not
encoded with additional meta-data. Inversely in solutions where the end-user is isolated or
prohibited from using the layout pop-up menu, the name can serve the developer.

Other considerations include using a character set that will not encumber external connectivity.
For example, XML queries utilize the layout name to establish context. Layout names must be
compatible. Again, not all solutions will need to be restricted by this; however, preparation for
the evolution of the solution can reduce your development efforts down the road. One should
also consider a case convention for consistency and professionalism. The length of a layout
name can be up to 100 characters, however, there are some dialog boxes that will not display
this length. A common issue is the inability to know what Table Occurrence (TO) is tied to a
layout during development. Outside of leaving the context of your development activities,
entering layout mode, and entering layout setup, this information is unavailable. Moreover, many
solution designs desire the ability to programmatically gain and utilize Source Table assignment
to a TO for interface and program logic. The inability to obtain this information from a
development or programmatic perspective has lead to the desire to encode or include meta-
data about Table Occurrence and Source Table Name within the layout name.

Anytime you utilize notation you make the name less friendly to the end-user. Unfortunately
there exists no way to provide both a user-friendly and developer-friendly name to a layout.
Therefore, depending on your solution requirements and design you need to consider the
trade-offs. And lastly, outside of a structured or encoded name for the layout there exists no
way to categorize layouts. For example, layouts are used for interface, reports, ‘hidden’ work,
submitting, and many other specific uses. There is no way to categorize these. This is useful to
understand what the purpose of the layout is. This has brought forth the desire to encapsulate
some categorization into the layout name.

5.1 Objectives:
 Recommended Character Set
 Recommended Case Convention
 Layout Name Length issues
 Provide method to address the inability to identify the Table Occurrence tied to a

layout without entering layout setup
 Provide method to address the challenges programmatically in viewing meta-data about

the layouts Source Table Name at runtime
 Provide method to address the Inability to programmatically gain meta-data about all the

layouts other than the one you are on
 Note the inability to provide a more “user-friendly” name to a more developer useful

name
 Note to avoid naming TO and Layout names the same.
 Provide method to address developers’ need to understand the “purpose” of the layout
 Provide method to address the inability to organize layouts by function, category, etc.

FileMaker Development Conventions v1.0

- 43 -

 Note Only: issues with connectivity technologies (XML, ODBC, JDBC), Including
Reserved SQL words

5.2 Problem Definition:
Recommended Character Set: The character set used for layouts should take into
consideration the character restrictions imposed by FileMaker itself as well as any
technologies that utilize layout names when communicating with FileMaker, such as XML
queries.

Recommended Case Convention: This recommendation is not to overcome a specific
problem but rather to make a consistent approach on how one will name layouts. The
objective is to select a method and be consistent with it.

Layout Name Length: A FileMaker layout can be up to 100 characters in length. This is
not a practical limit in many cases. With the release of version 8, most dialog boxes will
have no difficulty in displaying the full 100-character name. However the Layout Setup
dialog box is not resizable and limits the viewable characters to 42 on OS X and 48 on
Windows.

Challenge in identifying the Table Occurrence tied to a layout without entering Layout
Setup: There exists no way, outside of a great memory, to know what Table Occurrence
a layout is associated with other than entering into Layout Mode and opening the Layout
Setup dialog. This lack of information while developing can be cumbersome, requiring
dropping in and out of programming activities just to get fundamental layout information.
This led to the desire to include notation of the Layouts’ Table Occurrence association
within the name of the layout.

Challenge to programmatically view meta-data about the layout’s Source Table Name at
runtime: Developers may want to programmatically gain information about the layout,
such as the Table Occurrence Name or Table Name, in order to perform an action a
particular way. While the Get (LayoutTableName) will return the Table Occurrence
Name, it will not return the actual table name (Source Table name associated with the
Table Occurrence). This led to the desire to include the Source Table Name within the
layout name.

Challenge to programmatically view meta-data about all the layouts other than the one
you are on: Coupled closely to the previous problem is the need to programmatically gain
information about all layouts in a file. The Design function LayoutName(FileName) will
return all of the layouts in a file. However, there is no function to get Table Occurrences
associated with them other than using Get(LayoutTableName) for each individually, and
there is no way to get the Source Table Name. This led to the desire to include the
Source Table Name and the Table Occurrence Name in the Layout Name.

Challenge to provide a more “user-friendly” name with the developer useful name: Up to
and including FileMaker 8, there is no ability to provide both a user-friendly and a
developer useful name. As a developer you must make a decision on which method to
use for your solution.

FileMaker Development Conventions v1.0

- 44 -

Table Occurrence and Layout Names with the same name: By default, FileMaker will
generate layout names with the same name as the Table Occurrence the layout is based
upon. While this is a time saver in some respects, it can cause a number of problems
while attempting to gain information programmatically.

Developers need to understand purpose of layout: When developing a solution the
developer in many cases desires to provide some indication of the purpose of the layout
in the layout name. For Example, all report layouts might be prefixed with “rep”.
Additionally, prefix layouts with “work” might be used indicate the layout is used
programmatically to perform some work within a script. Regardless of the categorization,
there is a desire to indicate the ‘function’ of the layout both from the perspective of
organization and programmatic understanding.

Inability to organize layouts by function, category, and others: Whether you are selecting
a layout from the layout tab selection or other dialogs it can be cumbersome to sift
through a long list that is only categorized by alphabetic order. The layout list lacks any
categorization capabilities. This has lead to the desire to utilize a naming structure that
can break down this list into categories or functions to reduce the time to locate layout
names.

5.3 Standards Aware Guidelines (Layouts):
1. Should use only the characters

• Upper & lower case aA – zZ
• Number: 0,1,2,3,4,5,6,7,8,9
• Single and double underscores “_” “__”

2. Does NOT contain spaces.
3. Does NOT start with numbers.
4. Should be consistent with usage of singular or plural names
5. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Layouts)
lowerCamelCase myLayoutName
UpperCamelCase MyLayoutName
Single Underscore (lower Case) my_layout_name
Single Underscore (Title Case) My_Layout_Name
Single Underscore (UPPER CASE) MY_LAYOUT_NAME

6. Syntax:

<<FunctionPrefix>>[__]DescriptiveName[__]<TableOccurrenceName>
See Syntax Legend for description of syntax

• Function Prefix – optional; developer defined

Provides general syntax to allow for developer defined prefixing determined by
their specific needs and preferences, while defining a universally understood syntax.
If you choose not to use any Functional Prefixing simply omit it and start with the
Descriptive Name. There is no need to include the first “__”. The general
recommendation is to use a one to five character indicator and select a case
convention for the function.

FileMaker Development Conventions v1.0

- 45 -

• “__” – required
The usage of a “__” double underscore is the character. This allows the usage of
underscores within Descriptive Name and Table Occurrence Name, while still
providing readability and parsing capabilities.

• Descriptive Name -
Provides a method to give a ‘somewhat’ user-friendly name to the layout.

• “__” – required
The usage of a “__” double underscore is the character. This allows the usage of
underscores within Descriptive Name and Table Occurrence Name, while still
providing readability and parsing capabilities.

• Table Occurrence Name – required; uses defined Table Occurrence Name
Provides a visual and programmatic indicator/locator, outside of the Relationship
Graph, for the underlying Table Occurrence.

6 Custom Functions

Custom functions provide an unprecedented level of extensibility to the development
environment. They provide developers the ability to extend far beyond the default functions
built into FileMaker.

FileMaker has a specific syntax and case convention used for all of the built-in functions. For
example, the Text Function “MiddleWords” reads MiddleWords (text ; startingWord ;
numberOfWords). The function uses UpperCamelCase and each parameter is lowerCamelCase.
The only notable exception are the Get functions, which use a different case convention. This is
simply due to the nature of a Get function. All Get Functions call “reserved words”. There are
no parameters for Get Functions, and thus the syntax is different. The function Get
(WindowDesktopHeight) is a good example. Notice that the function name “Get” is always
UpperCamelCase and the value it will return is UpperCamelCase as well. For consistency, it
makes sense to utilize the case and syntax already established within the product.

Functions can stand along or work in conjunction with any number of other custom functions.
There exists no way to categorize or group these related functions. Some suggest that a
Custom Function has inputs and outputs and needs no grouping. While others feel that it is
important to understand that a function relies on or uses other functions. The FDC has opted
to make this distinction by using the terms “Private” and “Public Custom” functions.

When reviewing a calculation it is not always clear that it utilizes a Custom function. It is
important to be able to identify a Custom function within a calculation. The calculation engine
does not differentiate between built-in and custom functions. This can make it difficult to
troubleshoot and understand a calculation. By providing an indicator within the Custom function
name it will be easily recognizable within the calculation.

Lastly, one of the key values of Custom Functions is to provide extended functionality that
exists only within the function itself. Anyone who uses this function needs to understand what
it does and how it works. Therefore, it is important to liberally document for your future
reference and for others who may use your function. The FDC recommendation is to provide a
base set of guidelines on what and how a Custom function should be documented. In addition,
you should refer to the Calculation section of this document for some guidance on formatting
your Custom function calculation.

6.1 Objectives:
 Recommended Character Set
 Recommended Case Convention
 Syntax Separation
 Length Guidelines
 Method to group related functions
 Method to differentiate custom functions within calculations
 Method to differentiate between parent/child functions
 Guidelines on security settings on Private and Public Custom functions
 Method for documenting a custom function including minimum elements and format

FileMaker Development Conventions v1.0

- 47 -

6.2 Problem Definition:
Recommended Character Set – Custom functions provide an extension to the default
functions in FileMaker Pro/Advanced. For consistency, the recommendation is to follow
the character set used within the FileMaker Pro and FileMaker Pro 8 Advanced function
list.

Recommended Case Convention – The decision of how to separate words within the
Custom function names should be consistent with the built-in functions. All built-in
functions follow the same case convention. UpperCamelCase for the name and
lowerCamelCase for all parameters is used. Additionally, there needs to be syntax to the
Custom function to separate any prefixing needed for organizational needs.

Syntax – The Custom function syntax should incorporate consistency with built-in
functions, differentiate prefixes from the name, and support grouping of related functions
by name.

Length Recommendations – A Custom function can be up to 100 characters in length.
However, one should be aware that lengthy names could be cumbersome to work with in
the calculation dialog. The calculation dialog displays 26 characters on OS X and 30
characters on Windows in FileMaker Pro and FileMaker Pro 8 Advanced.

Grouping Related Functions – It is common to see a collection of two or more functions;
they work together to provide some functionality. The convention should define a
method to allow related functions to be visually recognized, and for developers to
understand dependencies among the group.

Differentiating Custom Functions Within Calculations – When interrogating a calculation
it is not clear that an element is a built-in or custom function. The convention should
define a method to clearly distinguish between the two.

Security on Custom Functions- The convention should provide some general awareness
on setting the availability of Public and Private Custom functions.

Documenting Custom Functions – The convention should provide a model for
documenting the various elements of a Custom function. These should include the
elements, formatting, and location.

6.3 Standards Aware Guidelines (Custom Functions):

6.3.1 Public Custom Functions
A Public Custom function is a custom function intended by its designer to be called
directly. These functions might be the "main" functions within a group of Custom
functions (that in turn call on Private Custom functions within the group), or they might
be individual custom functions that stand alone with no dependencies. In all cases the
term refers to functions that are intended to be called directly. For example, assume we
have three Custom functions;

• UrlHighlight
• UrlLastChar
• UrlReturnAll
• UrlReturnOne

By utilizing name grouping it is easy to recognize that this set of Custom functions are
related. They all are providing some functionality of work to something related to URLs.
What is not clear is the structure of the function. Without internal knowledge of the set
of functions, it is impossible to know if any one or more of these are dependent upon
the other. By classifying each function as Private or Public we can understand which
function is designed to be called first.

• UrlHighlight_CFpub
• UrlLastChar_CFpvt
• UrlReturnAll_CFpvt
• UrlReturnOne_CFpvt

This convention tells us that UrlHighlight_CFpub, within the group URL, is designed to
be called first and that each of the other functions are subordinate to it.

Syntax:
CustomFunctionName[__][CFpubf]
See Syntax Legend for description of syntax.

 Suffixed with “_CFpub” (CF uppercase, pub lowercase) – Identifies within any

calculation that the function is a custom function of public type.
 Should use only the characters:

Upper and lower case aA - zZ
Number: 0,1,2,3,4,5,6,7,8,9
Single and double underscores “_” “__”

 Should NOT contain spaces
 Should NOT start with numbers
 Should NOT contain periods
 Should utilize UpperCamelCase for the function name
 Example: ArrayBuilder_CFpub

6.3.2 Private Custom Functions
The intent of the term "private" is not to signify limited access, but rather to
communicate the intent of the function designer: a Private Custom function is one

FileMaker Development Conventions v1.0

- 49 -

intended only to be called by another custom function, whether by a Public Custom
function or another private custom function. By classifying a custom function as public
you are indicating that it is intended be called directly, and that it may have
dependencies on other custom functions. Conversely, a Private Custom function is
intended always to be called by another custom function, and never to be called directly.

What happens if I do call a "private" function directly?
Nothing! The terms "public" and "private" are merely intended to illustrate a
dependency relationship, not to restrict what can be done with a function. In practice, if
you intend to call a Private function directly, you may want to rename it as a Public
function instead.

Syntax:
CustomFunctionName[__][CFpvtf]
See Syntax Legend for description of syntax.

 Suffixed with “_CFpvtf” (CF uppercase, pub lowercase) – Identifies within any

calculation that the function is a custom function of private type.
 Should use only the characters:

Upper and lower Case aA - zZ
Number: 0,1,2,3,4,5,6,7,8,9
Single and double underscores “_” “__”

 Should NOT contain spaces
 Should NOT start with numbers
 Should NOT contain periods
 Should utilize UpperCamelCase for the function name.
 Example: ArrayBuilderHelper_CFpvt

6.3.3 Custom Function Parameters
In either Private or Public Custom functions, parameters should follow the standard
format for all FileMaker functions.

Syntax:
CustomFunctionName[__] [CFpub] or [CFpvt] (parameterOne, parameterTwo)
See Syntax Legend for description of syntax.

 Should use only the characters:

Upper and lower Case aA - zZ
Number: 0,1,2,3,4,5,6,7,8,9
Single and ouble underscores “_” “__”

 Should NOT contain spaces
 Should NOT start with numbers
 Should NOT contain periods
 Should utilize lowerCamelCase
 Example: MyCustomFunction_CFpub(parameterOne, parameterTwo)

FileMaker Development Conventions v1.0

- 50 -

6.3.4 Custom Function Naming Examples
Figure 11 illustrates a collection of Custom functions utilizing the standards aware
naming convention.

Figure 11

6.3.5 Custom Functions Documentation

Every Custom function should contain a minimum set of documentation. They should be
represented on a line by line basis and presented in the following order.

1. Name – Function Name
2. History – (Could include any of the following or others deemed necessary)

o Creator Name – Name of Function Developer
o Creator Email – Email of Function Developer
o Modifier Name – Name of Function Developer who has last modified the

function,
o Modifier email – Email of Function Developer who has last modified the

function
o Date Created – Date in DD-MMM-YYYY the function was created
o Date Last Modified – Date in DD-MMM-YYYY the function was last

modified

FileMaker Development Conventions v1.0

- 51 -

3. Purpose – Description of what the function is designed to achieve
4. Parameters – List any parameters used for the function
5. Important Notes – Additional Information
6. Example

/*
Name:
MyCustomFunction_CFpub

History:
Created by John Doe
Creation Date: 01-JAN-2005
Modified Date: 01-JAN-2005

Purpose:
This is an example function that shows the
format of documenting.

Parameters:
parameterOne: Example explanation of parameter. This should include any
pertinent details.
parameterTwo: Example explanation of parameter. This should include any
pertinent details.

Important Notes:
Provide any additional information that would be useful
knowledge for future developers and reference.
*/

6.3.6 Custom Function Formatting
See Calculation Section for Formatting of Custom Function Calculations.

6.4 Ancillary Considerations

Custom unctions can be set to be available in the calculation engine to either “All Accounts” or
“Only Accounts Assigned Full Access Privileges”. As a way to enforce privacy you might
consider setting your Public Custom functions to “All Accounts” and Private Custom functions
to “Only Accounts Assigned Full Access Privileges”. This will make your Public Custom
functions available to the calculation engine, while hiding the private ones.

7 Scripts

Managing scripts breaks down into two categories of organization and documentation. First,
organizing scripts should really not be considered when it comes to naming. ScriptMaker
doesn’t include organizational tools and many developers have resorted to utilizing their naming
of scripts to provide some assistance. While you can manually move scripts up and down a long
list there is no real tangible way to categorize a set of scripts. Therefore, position and name are
the only options left. This version of the FDC will not attempt to address any nomenclature
dealing with organization. However, there are a few areas that apply to documentation and
some rules around naming that can be helpful in addressing some hurdles all developers deal
with.

7.1 Objectives:
 Recommended Character Set
 Recommended Variable Character Set
 Recommended Case Convention (Variables)
 Script Name Length issues
 Address Inability to recognize a script that requires parameters by viewing the script

name
 Inability to provide a more “user-friendly” name or a more developer useful name for

those scripts accessible to end-user
 Inability to stop script at last point while using debugger requires an extra script step
 Consistent model for documenting a script
 Challenges with connectivity technologies (XML calling scripts)

7.2 Problem Definition:
Recommended Character Set: There are also some basic restrictions on the characters
FileMaker will allow in script names. Additionally when calling scripts from an external
call, such as XML, the characters used can present problems. As a developer you need to
be aware of the constraints of both FileMaker and any external system your solutions will
interact with.

Recommended Case Convention: This recommendation is not to overcome a specific
problem but rather to make a consistent approach on how scripts are named. The
objective is to select a method and be consistent with it.

Consistent Model for documenting scripts: The convention should provide a model for
documenting the various elements of a script. These should include the elements,
formatting, and location.

7.3 Standards Aware Guidelines (Scripts):

7.3.1 Script Names
1. Script Names Should use only the characters

• Upper & lower case aA – zZ
• Number 0,1,2,3,4,5,6,7,8,9
• Single and double underscores “_” “__”

2. Cannot exceed 100 characters in length

7.3.2 Variables
1. Must start with $ for local, $$ for global
2. Should not contain spaces
3. Individual words should consistently be separated using one of the following methods:

Recommended Word Separation Methods (Variables) $,$$
lowerCamelCase $myVariableName
UpperCamelCase $MyVariableName
Single Underscore (lower Case) $my_variable_name
Single Underscore (Title Case) $My_Variable_Name
Single Underscore (UPPER CASE) $MY_VARIABLE_NAME

7.3.3 Script Documentation
The Comment script step should be used to store the documentation. The comment should be
the first step in the script. Comments should include each of the components listed below and
be formatted as displayed in the example. If any one comment exceeds the 30K character limit,
then an additional comment script step should be added.

1. Name – Script Name
2. History – (Could include any of the following or others deemed necessary)

• Creator Name – Name of Script Developer
• Creator Email – Email of Script Developer
• Modifier Name – Name of Script Developer who has last modified the Script
• Modifier email – Email of Function Developer who has last modified the function
• Date Created – Date in DD-MMM-YYYY the script was created
• Date Last Modified – Date in DD-MMM-YYYY the script was last modified

3. Purpose – Description of what the script is designed to achieve
4. Declared Variables – List any variables the script will be declaring
5. Referenced Variables – List any variables the script will reference, such as previously

declared global variables
6. Parameters – List any parameters required for the script
7. Important Notes – Additional Information

Figure 12 shows an example.

FileMaker Development Conventions v1.0

- 54 -

Figure 12

8 Calculations

The clarity of a calculation formula is increased through formatting and comments. It is up to the
developer to provide a meaningful formatting. Good comments should explain the "why" more
than the "how." Moreover, good comments should provide an understanding of any code that is
not self-descriptive. In some cases better coding techniques can provide clearer understanding.
For example, using the Let() function on all but the simplest calculations can help dramatically in
improveS the understanding and readability of the code.

The recommended convention is designed to provide a consistent approach to formatting and
commenting calculations. The benefits of formatting and documenting are not obvious for simple
calculations; however, as calculations become more complex, it becomes helpful to break them
up and document them for future reference, for yourself or the next developer.

8.1 Objectives
 Consistent model for variables used within calculations.
 Consistent model for documenting calculations.
 Recommended comment categories. Provide examples on spacing and formatting to

around challenge of color-coding for various components such as: functions, strings,
fields, table occurrences, operators and custom functions.

8.2 Problem Definition
Documenting Calculations: Many developers comment to a varying degree. Some take a
minimalist approach while others are a bit more verbose. Generally speaking, everyone
agrees that some documentation is good, especially with complex calculations. The
standards aware recommendation outlines a minimal amount of information as well as a
location and format. This can be extended but should contain the minimum components.

Formatting Calculations: Proper formatting of calculations provides better readability and
aids in understanding the individual components. Moreover, it makes it much easier for
you and your colleagues to make sense of them. Since the calculation engine does not
automatically format calculations it’s up to the developer to provide this. The FDC has
elected to provide general guidance but does not specifically recommend any format.

8.3 Standards Aware Guidelines (Calculations):

8.3.1 Variables
1. Must start with $ for local, $$ for global
2. Should not contain spaces
3. Individual words should consistently be separated using one of the following methods:

Recommended Word Separation Methods (Variables) $,$$
lowerCamelCase $myVariableName
UpperCamelCase $MyVariableName
Single Underscore (lower Case) $my_variable_name
Single Underscore (Title Case) $My_Variable_Name
Single Underscore (UPPER CASE) $MY_VARIABLE_NAME

8.3.2 Calculation Block Header Commenting

Each commented calculation should contain a block header with the following sections:

• Purpose – Provides a general description of what the calculation is designed to do.
• Dependencies – Provides information on what the calculation may depend.

Examples include fields, custom functions and global variables.
• History – Provides a placeholder for any history pertinent to the calculation. This

may include the creator, creation date and versioning information.

Example:
/*
Purpose:
This calculation is used as an example for how one would
format a calculation field and properly comment it. The
purpose comment will appear in the field list.

Dependencies:
TextField: Text field used by this calculation
NumField: Number field used as a counter
MyCustomFunction__CFpub: Customer Function used in this calculation

History:
Created by John Doe
Date: 1/1/2005
Modified: 2/1/2005 for version x of solution
*/

FileMaker Development Conventions v1.0

- 57 -

8.3.3 In-Line Calculation Commenting

A calculation should be commented in the comments section, not throughout the
calculation. One exception is in creating variables with the Let function. Unless the
variable name makes its purpose self-evident, the developer should comment the
variable. If there is not enough space to comment the variable following its creation,
indent the following line and comment after it.

Use indenting liberally to improve readability. Many functions lend themselves to
indenting as demonstrated with the Let and Case functions in the following example.
This allows parts to be readily separated, such as the calculation body (the Case
statement) from the variable creation. (See Calculation Formatting for more discussion
on this topic.)

Let(
 [
 Text = TextField1;
 // Put the value of a field into a variable so it’s called once
 var1 = expression1;
 // The value of the first expression
 var2 = CustomFunction1(Text)
 // Optional commenting line used if the calculation is too long to put
 // the comment after it.
];
 Case(
 test1; result1;
 test2; result2;
 defaultResult)
)

The FDC recognizes that some calculation fields are extremely simple and their
purposes are self-evident. In such calculations, the purpose comment is valuable for
documenting the database, but further comments are unnecessary.

8.3.4 Calculation Formatting

Proper formatting of calculations provides better readability and aids in understanding the
individual components. Moreover, it makes it much easier for you and your colleagues to
make sense of them. Since the calculation engine does not automatically format
calculations it’s up to the developer to provide this. The FDC provides the following
general guidance but does not specifically recommend any format.

8.3.4.1 Formatting Example #1

We can see the following calculation is doing some kind of substitution. However,
reading one long string of text makes it rather difficult to know if the Substitute function
is the function that starts and ends this calculation. With formating, you could tell

FileMaker Development Conventions v1.0

- 58 -

quickly that the Substitute function begins and ends this calculation, with a carriage
return appended at the end.

Substitute(DATA::current line; Left(DATA::current line; Position(DATA::current
line; "/"; 1; 1) - 1); Middle(DATA::current line; Position(DATA::current line; "/"; 1;
1) + 1; Length(DATA::current line) - 1)) & "¶"

By glancing at this formatted calculation, you are reminded that the Substitute function
requires three parameters: Substitute (text ; searchString ; replaceString).

Substitute (

 DATA::current line ;

 Left (
 DATA::current line;
 Position (DATA::current line ; "/" ; 1 ; 1) - 1
) ;

 Middle (
 DATA::current line ;
 Position (DATA::current line ; "/" ; 1 ; 1) + 1 ;
 Length (DATA::current line) - 1
)

) & "¶"

But when the other functions as split up as well it also makes it easy to understand
where those parameters are. See Figure 13 below.

FileMaker Development Conventions v1.0

- 59 -

Figure 13

By splitting out each parameter, you can quickly see how much easier it becomes to
distinguish the functions.

8.3.4.2 Formatting Example #2
The general principal is to add white space and line breaks to calculations in such a way
that it is clear where each function and each function argument begins and ends. If any
function call is too long to fit on one line, it is broken up such that:

• The function name and initial parenthesis are followed by a new line.
• Each argument to the function starts a new line and is indented one level deeper

than the function name itself.
• The final parenthesis starts a new line, indented at the same level as the function

name.

If(
 Position(menu_selection; "Alternate Fruit"; 0; 1);
 Case(

FileMaker Development Conventions v1.0

- 60 -

 DayName(Get(CurrentDate)) = "Tuesday";
 "Oranges";
 DayName(Get(CurrentDate)) = "Thursday";
 "Apples";
 /* otherwise */
 "Bananas"
);
 "Pears"
) & " and " &
If(
 Position(menu_selection; "Alternate Vegetable"; 0; 1);
 Case(
 DayName(Get(CurrentDate)) = "Thursday";
 "Peas";
 /* otherwise */
 "Carrots"
);
 "Corn"
)

One needs to take into account that the FileMaker Pro Calculation dialog does not
employ a fixed-width font. Thus, it is necessary to begin the first function argument on a
new line, rather than putting both the function call and its first argument on the same
line. For example, the following code, while more compact than the above, is less
effective when displayed with a variable-width font:

If(Position(menu_selection; "Alternate Fruit"; 0; 1);
 Case(DayName(Get(CurrentDate)) = "Tuesday";
 "Oranges";
 DayName(Get(CurrentDate)) = "Thursday";
 "Apples";
 /* otherwise */
 "Bananas"
);
 "Pears"
) & " and " &
If(Position(menu_selection; "Alternate Vegetable"; 0; 1);
 Case(DayName(Get(CurrentDate)) = "Thursday";
 "Peas";
 /* otherwise */
 "Carrots"
);
 "Corn"
)

Use a format where parentheses matching are more obvious. Thus the calculation
formatter always starts closing parentheses on a new line when a function is split across
multiple lines, rather than returning something like this:

If(

FileMaker Development Conventions v1.0

- 61 -

 Position(menu_selection; "Alternate Fruit"; 0; 1);
 Case(
 DayName(Get(CurrentDate)) = "Tuesday";
 "Oranges";
 DayName(Get(CurrentDate)) = "Thursday";
 "Apples";
 /* otherwise */
 "Bananas");
 "Pears") & " and " &
If(
 Position(menu_selection; "Alternate Vegetable"; 0; 1);
 Case(
 DayName(Get(CurrentDate)) = "Thursday";
 "Peas";
 /* otherwise */
 "Carrots");
 "Corn")

Additional indentation may be applied on lines, which are the result of "wrapping".

Right(
 Middle(10 ^ 11 + Round(Abs(Amt); Precision); 1; 3) & "," &
 Middle(10 ^ 11 + Round(Abs(Amt); Precision); 4; 3);
 Length(Int(Round(Abs(Amt); Precision))) +
 If(Precision > 0; 1 + Precision; 0) +
 Int(
 (Length(Int(Round(Abs(Amt); Precision))) - 1) / 3
)
)

Without indentation for wrapping the result would be:

Right(
 Middle(10 ^ 11 + Round(Abs(Amt); Precision); 1; 3) & "," &
 Middle(10 ^ 11 + Round(Abs(Amt); Precision); 4; 3);
 Length(Int(Round(Abs(Amt); Precision))) +
 If(Precision > 0; 1 + Precision; 0) +
 Int(
 (Length(Int(Round(Abs(Amt); Precision))) - 1) / 3
)
)

FileMaker Development Conventions v1.0

- 62 -

8.4 Ancillary Considerations
Automated FileMaker Calculation Formatter: Debi Fuchs of Aptworks Consulting has created a
“Calculation Formatter” that does most of this work for you. You can try it out at
http://www.aptworks.com/tools. The calculation formatter does not provide additional
indentation on lines, which are the result of wrapping. The developer can augment the
formatting of their calculations by adding their own wrapping indentation if desired.

9 Value Lists

The impact of conventions to value lists is somewhat limited. However, some general guidelines
can help eliminate common problems, provide extensibility and organize. One should consider
using only characters that will not encounter problems with external technologies, such as XML
that can reference value list names. You should select and consistently utilize a specific case.

Some developers include meta-data to provide comments or identify a list type. If your
development practices lead you in this direction you should consider where you place this meta-
data and what form should it take. Placing the meta-data at the end of the name has some
benefit. This placement allows you to still use alphabetic sorting for the list names, it allows for
type-ahead based on the list name as opposed to the meta-data, and presents the list in an
expected format. The other consideration is the form this meta-data should take. The FDC has
elected to provide a placeholder that defines some basic notation, but also allows the developer
extensibility by allowing this component of the syntax to be defined by the developer for their
specific needs. Any extension should be documented in the adherence section of your solution
(See Adherence section of this document for more information).

9.1 Objectives:
 Recommended Character Set
 Recommended Case Convention
 Recommended Syntax Separation
 Length Guidelines
 Singular vs. Plural Guidelines
 Address challenge of Value List Comments
 Address challenge of Meta-data (Source/Type) outside of “Define Value List”
 Address inability to organize value lists other than a manual sequential order
 Note: Issues related to updating custom value lists independently of data or schema in a

file.
 Calculations link to name rather than internal value list ID

9.2 Problem Definition:
Recommended Character Set : The impact of improper characters in value lists is
minimal. However, there are a few considerations. Developers should take care to utilize
characters that do not conflict with FileMaker calculations that may be used to interact
with value list names. Additionally, developers should be aware of any characters that may
present a problem with XML queries. Limiting the character set to the recommendations
listed here should help to limit exposure to these issues.

Recommended Case Convention: The decision of how to separate words within value
lists has an impact of overall consistency throughout conventions. The recommended
convention suggests utilizing only one of the following styles; lowerCamelCase,
UpperCamelCase, Underscores, and Uppercase convention for value list names.

FileMaker Development Conventions v1.0

- 64 -

Recommended Syntax Separation: Assuming a developer wants to include some meta-
data about a value list, even if only to a limited extent, there needs to be a clear
understanding for the current and future developers as well as the end-user as to what
separates the value list name from the meta-data/notation. The selection of characters for
separating meta-data and value list name must be different from that which separates
individual words within the value list name.

Value List Name Length: A FileMaker value list can be up to 100 characters in length. This
however, is not a practical limit in most cases. With the release of FileMaker 8, all dialog
boxes on the Macintosh will have no difficulty in displaying the full name. On the
Windows platform there are a few areas where a value list name longer than 30
characters will not display. However, full names are accessible by navigating into the
“Define Value List...” dialog. The decision on length is really more a matter of choice
rather than a specific limitation.

Singular vs. Plural Guidelines: The decision to utilize singular or collective nouns in place
of plural alternatives is noted here only to suggest that as a developer you should make a
decision on which you will use and be consistent with it.

9.3 Standards Aware Guidelines (Value Lists):
1. Should use only the characters

• Upper & lower case aA – zZ
• Number 0,1,2,3,4,5,6,7,8,9
• Single and double underscores “_” “__”

2. Does NOT contain spaces
3. Is consistent with usage of singular or Plural names
4. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Value Lists)
lowerCamelCase myValueListName
UpperCamelCase MyValueListName
Single Underscore (lower Case) my_value_list_name
Single Underscore (Title Case) My_Value_List_Name
Single Underscore (UPPER CASE) MY_VALUE_LIST_NAME

5. Syntax:

ValueListName[__]{suffix}
(See Syntax Legend at the end of this document for details on syntax.)

Syntax Explained: Value lists syntax is designed to create a consistent approach to value
lists that addresses the majority of identified problems. The use of a suffix, instead of a
prefix allows for more flexibility of value list names to match the developers style while
still addressing some basic consistency. It provides the basic meta-data. It allows for
grouping of value list by function.

• ValueListName –

Follow the recommendations outlined above, followed by the “__” double
underscores.

• “__” – required
Double underscores acts as separator between value list name and the suffix.

• suffix – optional; developer defined (baseline recommendation provided)
Could be one of the items listed in the following table. This could be extended for
any specific needs. Any extension should take the form of a suffix to continue to
allow value list items to sort according to name and allow type-ahead functionality
based on name rather than meta-data prefixes. Any extension should be
documented in the adherence section of your solution. (See Adherence section of
this document for more information). The FDC recommends the following as basic
requirement.

Value List Baseline Recommended Type Suffixes
c Custom Value
x Value list from another file
d Value list from field, including all values (for Dynamic)
r Value list from field, including related values (for Related)

10 Accounts & Security

FileMaker accounts may be setup to authenticate internally or externally. Internal accounts
uniquely identify a specific user and are managed within FileMaker entirely. Externally
authenticated accounts uniquely identify an external group, which can contain one or more
users. External Account membership is managed externally to FileMaker. FileMaker utilizes
“privilege sets” to determine the capabilities or rights an authenticated account has to the
database. Figure 14 illustrates the relationship between these components.

Figure 14

The privilege set defines the capabilities a user or group of users has within the file. Think of this
as their role. For example, you may have a developer, administrator, read-only, data entry and
various other accounts. The name should represent the role appropriately. This is especially
important when administration is ‘outside’ or external to FileMaker.

One of the key benefits of external authentication is the ability to leverage the organization’s
security infrastructure. This provides a single place to manage access to all the resources
available to any user within the scope of the organization. This also means that IT
administrators, not familiar with the specifics of your solution or all the solutions within the
environment, will need to assign membership by name. You will need clearly to articulate the
file(s)/solution and the role to assign membership with this is mind; some consistency must exist
for privilege sets and externally authenticated accounts.

A combination of components needs to be included in the externally authenticated
account/group name to identify it. At a minimum it should contain the solution name, to
identify the group as being associated with a particular solution. It should also contain the role

FileMaker Development Conventions v1.0

- 67 -

for that solution. For Example, suppose we have a solution called “Sales Tracker”. It contains
three privilege sets: Operators, NorthAmericanSales, and GlobalSales. Then suppose we have
another solution called “Shipping Tracker”, which contains the same privilege sets. Set aside the
possibility that each role maps exactly to the same users for each solution, something that will
not be the case in many situations. You will need to specify the solution and role a user should
be assigned. This requires a naming convention that utilizes both the privilege set and name of
the solution for external recognition.

10.1 Objectives:
 Recommended Character Set
 Recommended Case Convention
 Recommended Syntax Separation
 Length Guidelines
 Allow for easy recognition of external group association name to specific solution
 Allow for easy recognition of external group privileges by name to specific solution
 Address duplicate solutions on separate servers when using external authentication

10.2 Problem Definition
Recommended Character Set: There are some basic restrictions on the characters
FileMaker and the authenticating OS will allow. To avoid character restrictions the
general recommendation is to utilize upper and lower case lower ACSII characters and
numbers.

Recommended Case Convention: The choice made here impacts other areas where one
applies a convention. The decision is not to overcome a specific problem but rather to
introduce a consistent approach on how one will utilize case throughout all other
conventions. The objective is to select a method and be consistent with it.

Recommended Syntax Separation: Syntax separation for account naming refers to the way
to differentiate the syntax from the names. It is common to see prefixes or suffixes used
to indicate a file is part of a group of files. They are also used to hold identification
characteristics. We are striving for a consistent way to differentiate this leading/trailing
meta-data from the account name.

Length Guidelines: Privilege set and account names are limited to 100 characters.
Windows Server 2003 is limited to 64 character group names. Macintosh OS X Server
will support 100-character group names.

Solution Recognition: Specific to external authentication. Groups created outside of the
development environment must exactly match the names created within the development
environment in the FileMaker Pro files. Considering that many organizations will have any
number of solutions, it can become cumbersome to the ones relevant to a specific
solution. Including the solution name within the group name alleviates this problem.

Privilege (Role) Recognition: Specific to external authentication. Groups created outside
of the development environment must exactly match the names created within the
development environment. Considering that many organizations will have any number of

FileMaker Development Conventions v1.0

- 68 -

solutions, it can become cumbersome to sort through various group names to find the
ones relevant to a specific solution. In conjunction with this you need to locate the role
for that specific solution as well. Including the role name alleviates this problem.

Duplicate Solutions on Separate Servers: There are situations where the “same” solution
is hosted from multiple servers. They are essentially exact copies but serve a different set
of users. An extension of the general recommendations should be made to handle this
special and somewhat rare situation.

10.3 Standards Aware Guidelines (Security):

10.3.1 Privilege Sets

1. Should use only the characters
• Upper & lower case aA – zZ
• Number 0,1,2,3,4,5,6,7,8,9
• Single and double underscores “_” “__”

2. Should not contain spaces.
3. Should consistently use singular or plural names.
4. Can be no longer than 100 characters in length. (When using the recommended

externally authenticated accounts guidelines the length, will need to allow for full syntax
which can not be more than 64 characters.)

5. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Privilege Sets)
lowerCamelCase myPrivilegeSetName
UpperCamelCase MyPrivilegeSetName
Single Underscore (lower Case) my_Privilege_Set_Name
Single Underscore (Title Case) My_Privilege_Set_Name
Single Underscore (UPPER CASE) MY_PRIVILEGE_SET_NAME

10.3.2 Internally Authenticated Account Names

1. Should use only the characters
• Upper & lower case aA – zZ
• Number 0,1,2,3,4,5,6,7,8,9
• Single and double underscores “_” “__”

2. Should not contain spaces.
3. Should consistently use singular or plural names.
4. Can be no longer than 100 characters in length.
5. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Internallyy Authenticated Accounts)
lowerCamelCase 6. accountName
UpperCamelCase 7. AccountName
Single Underscore (lower Case) 8. account_name
Single Underscore (Title Case) 9. Account_Name
Single Underscore (UPPER CASE) 10. ACCOUNT_NAME

10.3.3 Externally Authenticated Account Names (Group Names)

1. Should use only the characters

FileMaker Development Conventions v1.0

- 70 -

• Upper & lower case aA – zZ
• Number 0,1,2,3,4,5,6,7,8,9
• Single and double underscores “_” “__”

2. Should not contain spaces.
3. Should consistently use singular or plural names.
4. Should be no longer than 64 characters to work on both the Windows and OS X

platforms.
5. Individual words should consistently be separated using one of the following methods.

Recommended Word Separation Methods (Internally Authenticated Accounts)
lowerCamelCase accountName
UpperCamelCase AccountName
Single Underscore (lower Case) account_name
Single Underscore (Title Case) Account_Name
Single Underscore (UPPER CASE) ACCOUNT_NAME

6. Syntax:

<<FileMakerGroupDesignation>>[__]<SolutionName>[__]<PrivilegeSetName>

The syntax is designed to provide a consistent way to name externally authenticated
groups. The convention aids in the management of external groups by providing a
convention that identifies the group as a “FileMaker Security Group”, a specific
solution/file, and the Role or privilege set. With these 3 items, the management of
groups is simplified and well organized. We utilize “__” (double underscore to separate
each of the sections. These characters are compatible with AD (Active Directory)
before and after Windows 2000. They are also supported characters for OD (Open
Directory). Before Windows 2000 group names can not contain : ; | = + , * ? < > “ / \ [
].

NOTE: There will be those instances where organizational rules may dictate group
names. In such cases, utilize the knowledge here to adapt your convention as necessary.

• FileMakerGroupDesignation – required; developer defined

Identifies the group as a FileMaker security group. This will group all FileMaker
security groups together within the workgroup manager tool. The
recommendation is to use “fm” in lower case. The specific selection is arbitrary
but recommended for consistency.

• SolutionName –
Identifies the specific solution/file the group is associated with. This will continue to
support the correct sorting by additionally sorting all of the groups for a particular
solution together. The name should match your selection made for the primary file
or entry point files without the .fpX extension.

• PrivilegeSetName – required; uses privilege set name
Identifies, the role or capabilities the group members have within a solution.
Including this in the account/group name provides external management easy
identification to the group that needs to be modified.

FileMaker Development Conventions v1.0

- 71 -

Special Privilege Sets -
FileMaker has 3 predefined privilege sets: [Full Access], [Data Entry Only], and
[Read-Only Access]. These privilege sets are not modifiable, cannot be renamed
and cannot be deleted. When using any of these privilege sets, drop the []
brackets from the privilege set name when setting up the external authenticated
group account. Windows prohibits these characters in pre-Windows 2000 group
names.

[Read Only] = Read_Only, ReadOnly, readOnly, READ_ONLY
Example: fm_MySolution__Read_Only

7. Full Access with Externally Authenticated Accounts: In FileMaker Security: The Book by
Steven H. Blackwell, he comments on the use of Full Access privilege sets with
externally authenticated accounts. He writes; “I strongly recommend that a developer
never set an Account with the default [Full Access] Privilege Set to be subject to
External Authentication. Authenticate such an Account by the internal FileMaker Pro
method only. First, all files must have at least one internally authenticated [Full Access]
Account. Second, in its initial version FileMaker Server 7 and FileMaker Server 7
Advanced do not support the Global Universal ID (GUID) system. If a hacker or
industrial spy obtained a physical copy of a FileMaker Pro file and was able to recreate
or to “spoof” the domain structure by guessing Group names, that hacker could gain full
and unrestricted access to the file. This is another argument for use of distinctive
Group names.” The FDC supports this position.

8. There is one additional special note related to group names as identified in the
FileMaker, Inc. technical brief on external server authentication, available at
http://www.filemaker.com/downloads/pdf/server_authentication_tb.pdf

“FileMaker Server 7 on Mac OS X Server looks for the group short name returned from
the Directory Services. That is the official name that identifies the group to the system,
not the long (user-friendly) name. Thus, in the definition of accounts in FileMaker Pro 7
for External Server authentication, the defined group name must match the Directory
Service Group short name. In many instances the long and short names will be identical;
however, in some instances they will not be. Spaces and high ASCII characters might be
removed, for example. So we recommend avoiding them altogether. Developers and
administrators should check for the short name.”

10.4 Ancillary Considerations:

Host Server Designation: There are situations where the “same” solution is hosted from
multiple servers. They are essentially exact copies but serve a different set of users. In these
cases you may want to consider an addition to the external group name syntax. The inclusion of
the HostServer designation will assist in assigning group membership for the solution on the
appropriate server.

Syntax:
<<FileMakerGroupDesignation>>[__]<HostServer>[__]<SolutionName>[__]<PrivilegeSetN
ame>

FileMaker Development Conventions v1.0

- 72 -

Host Server –Should utilize the DNS, System Name, or Custom Name of the hosting server.
Generally these name will be the same, however, this may not be the case in every
implementation. Choose the HostServer name that identifies the specific server as recognized
by the organization.

Examples:

• Standard Syntax:
o fm__MySolution__ReadOnly
o fm__MySolution__General_Users
o fm__MySolution__salesAssociates

• Using Ancillary Consideration for Host Server:
o fm__fmserver1__MySolution__General Users
o fm__fmserver2__MySolution__General Users

11 Adherence

This section assumes that you have found value in the content of the FDC and you’re ready to
implement some standards awareness in your solution based on the recommendations within.
Considering that much of the information contained within this document is subject to
extension and deviations for a variety of reasons, it makes sense to provide a way to document
these differences in a consistent way. Adherence is not so much about strictly following the
guidelines as it is about documenting where you differ and/or extend. The objective is to allow
the FDC to serve as a baseline, and to reduce the amount of effort you would need to
document the how and why of your convention. By allowing the FDC to provide the baseline,
you can eliminate a significant portion of this effort. What is needed is for you to indicate where
you deviate or extend beyond the FDC. This allows future developers to have reference to both
the rationale of the naming with any additional considerations you choose to implement.

Convention Objectives

 Reference the FDC version being utilized
 Reference the FDC version deviations
 Reference any other notable information relative to solution
 Define how information should be stored/accessible
 Define the minimal set of information

Problem Definition

Reference the FDC version being utilized: As the FileMaker product line evolves, the
FDC will change to stay current. It follows that a solutions convention will be based on
a particular version of the FDC and your specific extensions. Thus, it is important to
indicate the version of the FDC.

Reference the FDC version deviations: As with the FDC itself, there is a strong
likelihood that your extensions and deviations will change and evolve. Thus, it is
important to indicate your deviations with some versioning as well.

Reference any other notable information relative to solution: Some projects/solutions
lend themselves to the need for version, creator, and other meta-data elements.
However, the concept of release/version applies only within a narrow band project
lifecycle, which is during the initial development of a project being built from scratch.
These concepts are not too valuable in the “long tail” or “evolutionary” phase of a
project. Even if a single developer does most of the initial building, many developers may
work on the project over its life. However, for a time period or particular solutions it
makes sense to have this meta-data available.

How to store and make accessible adherence information: For consistency this
information should be available in a universally understood location.

Minimal set of information: It is generally accepted that every solution should have some
documentation. Some systems even contain their own help systems, which contain both
user and developer information. Rather then imposing a particular method on building
help/documentation systems, the recommendation should simply set the guideline on
what the minimum set of information that should be available and how to get to it.

FileMaker Development Conventions v1.0

- 74 -

11.1 Standards Aware Convention Guidelines

1. Every solution should have an “About...” A user or developer with privileges, can open the

file should be able to obtain the following items.
• FDC version utilized

o URL link to location of FDC on the FileMaker website
o FDC stored as PDF within a container field that can be exported

• FDC version deviations
o URL link to location of version deviation on your website
o Document stored as PDF within a container field that can be exported that

contains all deviations and extension applicable to the solution
• Documentation meta-data – Any other information, at the discretion of the

developer(s), deemed necessary to include. This may be stored in a single field or
any number of fields. It should be available from the “About...” interface that is
presented. Some examples may include but are not limited to:

o Company
o Solution Version
o Acknowledgements
o Release Date
o Developer(s) Name(s)
o Contact Information

Note:
Runtime developers have legal obligations for “About Layouts”. See the FileMaker 8
Development Guide, Page 82.

FileMaker Development Conventions v1.0

- 75 -

Appendix A - SQL Reserved Words

The following table lists all words reserved in the SQL standard
Source: http://developer.mimer.se/validator/sql-reserved-words.tml

SQL-92 SQL-99 SQL-2003
ABSOLUTE ABSOLUTE

ACTION ACTION

ADD ADD ADD

 AFTER

ALL ALL ALL

ALLOCATE ALLOCATE ALLOCATE

ALTER ALTER ALTER

AND AND AND

ANY ANY ANY

ARE ARE ARE

 ARRAY ARRAY

AS AS AS

ASC ASC

 ASENSITIVE ASENSITIVE

ASSERTION ASSERTION

 ASYMMETRIC ASYMMETRIC

AT AT AT

 ATOMIC ATOMIC

AUTHORIZATION AUTHORIZATION AUTHORIZATION

AVG

 BEFORE

BEGIN BEGIN BEGIN

BETWEEN BETWEEN BETWEEN

 BIGINT

 BINARY BINARY

BIT BIT

BIT_LENGTH

 BLOB BLOB

 BOOLEAN BOOLEAN

BOTH BOTH BOTH

 BREADTH

BY BY BY

CALL CALL CALL

 CALLED CALLED

CASCADE CASCADE

CASCADED CASCADED CASCADED

CASE CASE CASE

CAST CAST CAST

CATALOG CATALOG

CHAR CHAR CHAR

CHAR_LENGTH

FileMaker Development Conventions v1.0

- 76 -

SQL-92 SQL-99 SQL-2003
CHARACTER CHARACTER CHARACTER

CHARACTER_LENGTH

CHECK CHECK CHECK

 CLOB CLOB

CLOSE CLOSE CLOSE

COALESCE

COLLATE COLLATE COLLATE

COLLATION COLLATION

COLUMN COLUMN COLUMN

COMMIT COMMIT COMMIT

CONDITION CONDITION CONDITION

CONNECT CONNECT CONNECT

CONNECTION CONNECTION

CONSTRAINT CONSTRAINT CONSTRAINT

CONSTRAINTS CONSTRAINTS

 CONSTRUCTOR

CONTAINS

CONTINUE CONTINUE CONTINUE

CONVERT

CORRESPONDING CORRESPONDING CORRESPONDING

COUNT

CREATE CREATE CREATE

CROSS CROSS CROSS

 CUBE CUBE

CURRENT CURRENT CURRENT

CURRENT_DATE CURRENT_DATE CURRENT_DATE

CURRENT_DEFAULT_TRANSFORM_
GROUP

CURRENT_DEFAULT_TRANSFORM_
GROUP

CURRENT_PATH CURRENT_PATH CURRENT_PATH

 CURRENT_ROLE CURRENT_ROLE

CURRENT_TIME CURRENT_TIME CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_TIMESTAMP CURRENT_TIMESTAMP

CURRENT_TRANSFORM_GROUP_FO
R_TYPE

CURRENT_TRANSFORM_GROUP_FO
R_TYPE

CURRENT_USER CURRENT_USER CURRENT_USER

CURSOR CURSOR CURSOR

 CYCLE CYCLE

 DATA

DATE DATE DATE

DAY DAY DAY

DEALLOCATE DEALLOCATE DEALLOCATE

DEC DEC DEC

DECIMAL DECIMAL DECIMAL

DECLARE DECLARE DECLARE

DEFAULT DEFAULT DEFAULT

DEFERRABLE DEFERRABLE

DEFERRED DEFERRED

DELETE DELETE DELETE

FileMaker Development Conventions v1.0

- 77 -

SQL-92 SQL-99 SQL-2003
 DEPTH

 DEREF DEREF

DESC DESC

DESCRIBE DESCRIBE DESCRIBE

DESCRIPTOR DESCRIPTOR

DETERMINISTIC DETERMINISTIC DETERMINISTIC

DIAGNOSTICS DIAGNOSTICS

DISCONNECT DISCONNECT DISCONNECT

DISTINCT DISTINCT DISTINCT

DO DO DO

DOMAIN DOMAIN

DOUBLE DOUBLE DOUBLE

DROP DROP DROP

 DYNAMIC DYNAMIC

 EACH EACH

 ELEMENT

ELSE ELSE ELSE

ELSEIF ELSEIF ELSEIF

END END END

 EQUALS

ESCAPE ESCAPE ESCAPE

EXCEPT EXCEPT EXCEPT

EXCEPTION EXCEPTION

EXEC EXEC EXEC

EXECUTE EXECUTE EXECUTE

EXISTS EXISTS EXISTS

EXIT EXIT EXIT

EXTERNAL EXTERNAL EXTERNAL

EXTRACT

FALSE FALSE FALSE

FETCH FETCH FETCH

 FILTER FILTER

FIRST FIRST

FLOAT FLOAT FLOAT

FOR FOR FOR

FOREIGN FOREIGN FOREIGN

FOUND FOUND

 FREE FREE

FROM FROM FROM

FULL FULL FULL

FUNCTION FUNCTION FUNCTION

 GENERAL

GET GET GET

GLOBAL GLOBAL GLOBAL

GO GO

GOTO GOTO

FileMaker Development Conventions v1.0

- 78 -

SQL-92 SQL-99 SQL-2003
GRANT GRANT GRANT

GROUP GROUP GROUP

 GROUPING GROUPING

HANDLER HANDLER HANDLER

HAVING HAVING HAVING

 HOLD HOLD

HOUR HOUR HOUR

IDENTITY IDENTITY IDENTITY

IF IF IF

IMMEDIATE IMMEDIATE IMMEDIATE

IN IN IN

INDICATOR INDICATOR INDICATOR

INITIALLY INITIALLY

INNER INNER INNER

INOUT INOUT INOUT

INPUT INPUT INPUT

INSENSITIVE INSENSITIVE INSENSITIVE

INSERT INSERT INSERT

INT INT INT

INTEGER INTEGER INTEGER

INTERSECT INTERSECT INTERSECT

INTERVAL INTERVAL INTERVAL

INTO INTO INTO

IS IS IS

ISOLATION ISOLATION

 ITERATE ITERATE

JOIN JOIN JOIN

KEY KEY

LANGUAGE LANGUAGE LANGUAGE

 LARGE LARGE

LAST LAST

 LATERAL LATERAL

LEADING LEADING LEADING

LEAVE LEAVE LEAVE

LEFT LEFT LEFT

LEVEL LEVEL

LIKE LIKE LIKE

LOCAL LOCAL LOCAL

 LOCALTIME LOCALTIME

 LOCALTIMESTAMP LOCALTIMESTAMP

 LOCATOR

LOOP LOOP LOOP

LOWER

 MAP

MATCH MATCH MATCH

MAX

FileMaker Development Conventions v1.0

- 79 -

SQL-92 SQL-99 SQL-2003
 MEMBER

 MERGE

 METHOD METHOD

MIN

MINUTE MINUTE MINUTE

 MODIFIES MODIFIES

MODULE MODULE MODULE

MONTH MONTH MONTH

 MULTISET

NAMES NAMES

NATIONAL NATIONAL NATIONAL

NATURAL NATURAL NATURAL

NCHAR NCHAR NCHAR

 NCLOB NCLOB

 NEW NEW

NEXT NEXT

NO NO NO

 NONE NONE

NOT NOT NOT

NULL NULL NULL

NULLIF

NUMERIC NUMERIC NUMERIC

 OBJECT

OCTET_LENGTH

OF OF OF

 OLD OLD

ON ON ON

ONLY ONLY ONLY

OPEN OPEN OPEN

OPTION OPTION

OR OR OR

ORDER ORDER ORDER

 ORDINALITY

OUT OUT OUT

OUTER OUTER OUTER

OUTPUT OUTPUT OUTPUT

 OVER OVER

OVERLAPS OVERLAPS OVERLAPS

PAD PAD

PARAMETER PARAMETER PARAMETER

PARTIAL PARTIAL

 PARTITION PARTITION

PATH PATH

POSITION

PRECISION PRECISION PRECISION

PREPARE PREPARE PREPARE

FileMaker Development Conventions v1.0

- 80 -

SQL-92 SQL-99 SQL-2003
PRESERVE PRESERVE

PRIMARY PRIMARY PRIMARY

PRIOR PRIOR

PRIVILEGES PRIVILEGES

PROCEDURE PROCEDURE PROCEDURE

PUBLIC PUBLIC

 RANGE RANGE

READ READ

 READS READS

REAL REAL REAL

 RECURSIVE RECURSIVE

 REF REF

REFERENCES REFERENCES REFERENCES

 REFERENCING REFERENCING

RELATIVE RELATIVE

 RELEASE RELEASE

REPEAT REPEAT REPEAT

RESIGNAL RESIGNAL RESIGNAL

RESTRICT RESTRICT

 RESULT RESULT

RETURN RETURN RETURN

RETURNS RETURNS RETURNS

REVOKE REVOKE REVOKE

RIGHT RIGHT RIGHT

 ROLE

ROLLBACK ROLLBACK ROLLBACK

 ROLLUP ROLLUP

ROUTINE ROUTINE

 ROW ROW

ROWS ROWS ROWS

 SAVEPOINT SAVEPOINT

SCHEMA SCHEMA

 SCOPE SCOPE

SCROLL SCROLL SCROLL

 SEARCH SEARCH

SECOND SECOND SECOND

SECTION SECTION

SELECT SELECT SELECT

 SENSITIVE SENSITIVE

SESSION SESSION

SESSION_USER SESSION_USER SESSION_USER

SET SET SET

 SETS

SIGNAL SIGNAL SIGNAL

 SIMILAR SIMILAR

SIZE SIZE

FileMaker Development Conventions v1.0

- 81 -

SQL-92 SQL-99 SQL-2003
SMALLINT SMALLINT SMALLINT

SOME SOME SOME

SPACE SPACE

SPECIFIC SPECIFIC SPECIFIC

 SPECIFICTYPE SPECIFICTYPE

SQL SQL SQL

SQLCODE

SQLERROR

SQLEXCEPTION SQLEXCEPTION SQLEXCEPTION

SQLSTATE SQLSTATE SQLSTATE

SQLWARNING SQLWARNING SQLWARNING

 START START

 STATE

 STATIC STATIC

 SUBMULTISET

SUBSTRING

SUM

 SYMMETRIC SYMMETRIC

 SYSTEM SYSTEM

SYSTEM_USER SYSTEM_USER SYSTEM_USER

TABLE TABLE TABLE

 TABLESAMPLE

TEMPORARY TEMPORARY

THEN THEN THEN

TIME TIME TIME

TIMESTAMP TIMESTAMP TIMESTAMP

TIMEZONE_HOUR TIMEZONE_HOUR TIMEZONE_HOUR

TIMEZONE_MINUTE TIMEZONE_MINUTE TIMEZONE_MINUTE

TO TO TO

TRAILING TRAILING TRAILING

TRANSACTION TRANSACTION

TRANSLATE

TRANSLATION TRANSLATION TRANSLATION

 TREAT TREAT

 TRIGGER TRIGGER

TRIM

TRUE TRUE TRUE

 UNDER

UNDO UNDO UNDO

UNION UNION UNION

UNIQUE UNIQUE UNIQUE

UNKNOWN UNKNOWN UNKNOWN

 UNNEST UNNEST

UNTIL UNTIL UNTIL

UPDATE UPDATE UPDATE

UPPER

FileMaker Development Conventions v1.0

- 82 -

SQL-92 SQL-99 SQL-2003
USAGE USAGE

USER USER USER

USING USING USING

VALUE VALUE VALUE

VALUES VALUES VALUES

VARCHAR VARCHAR VARCHAR

VARYING VARYING VARYING

VIEW VIEW

WHEN WHEN WHEN

WHENEVER WHENEVER WHENEVER

WHERE WHERE WHERE

WHILE WHILE WHILE

 WINDOW WINDOW

WITH WITH WITH

 WITHIN WITHIN

 WITHOUT WITHOUT

WORK WORK

WRITE WRITE

YEAR YEAR YEAR

ZONE ZONE

FileMaker Development Conventions v1.0

- 83 -

Appendix B - Character Usage Chart

[X] Not Allowed or Warning on Attempt [NR] Not Recommended [C] Convention Uses [R] Reserved
Character

 Character File
Names

Tables
Names

TO
Names

Field
Names

Layout
Name

Custom
Function

Name

Value List
Names

Scripts
Names

Account
Names

Variables

. Period X X X X NR NR NR NR NR NR

+ Plus or Addition NR X X X NR X NR NR NR NR

* Star NR X X X NR X NR NR NR NR

^ Carrot NR X X X NR X NR NR NR NR

= Equals NR X X X NR X NR NR NR NR

> Greater Than NR X X X NR X NR NR NR NR

(Left Parentheses NR X X X NR X NR NR NR NR

" Double Quote NR X X X NR X NR NR NR NR

: Colon NR NR NR X NR NR NR NR NR NR

, Comma NR X X X NR X NR NR NR NR

- Minus or Subtraction NR X X X NR X NR NR NR NR

/ Forward Slash NR X X X NR X NR NR NR NR

& Ampersand NR X X X NR X NR NR NR NR

≠ Not Equals NR X X X NR X NR NR NR NR

< Less Than NR X X X NR X NR NR NR NR

) Right Parentheses NR X X X NR X NR NR NR NR

; Semicolon NR X X X NR X NR NR NR NR

:: Relational Indicator NR NR X X NR X NR NR NR NR

{ Left Curly Brace NR NR X NR NR NR NR NR NR NR

FileMaker Development Conventions v1.0

- 84 -

} Right Curly Brace NR X X NR NR NR NR NR NR NR

? Question NR NR NR NR NR NR NR NR NR NR

~ Tilde NR NR NR NR NR NR NR NR NR NR

` Apostrophe NR NR NR NR NR NR NR NR NR NR

! Exclamation NR NR NR NR NR NR NR NR NR NR

% Percentage NR NR X NR NR NR NR NR NR NR

| Pipe NR NR R NR NR NR NR NR NR NR

$ Dollar NR X X X NR NR NR NR NR R

$$ Double Dollar NR X X X NR NR NR NR NR R

[Left Bracket NR X X X NR X NR NR NR NR

] Right Bracket NR X X X NR X NR NR NR NR

__ Double underscores C C C C C C C C C NR

FileMaker Development Conventions v1.0

- 85 -

Appendix C – Terminology & Definitions

Camel Case: The practice of writing compound words or phrases where the words are joined
without spaces, and each word is capitalized within the compound. The name comes from the
uppercase "bumps" in the middle of the compound word, suggesting the humps of a camel.

camelCaseLooksLikeThis
lowerCamelCaseLooksTheSame
UpperCamelCaseLooksLikeThis

There are two common varieties of CamelCase, distinguished by their handling of the initial
letter. The variety in which the first letter is capitalized is commonly called UpperCamelCase,
Pascal case, or BiCapitalized. The variety in which the first letter is left as lowercase is
commonly called lowerCamelCase or sometimes simply camelCase. For clarity, this document
will use the terms UpperCamelCase and lowerCamelCase, respectively.

Source: http://en.wikipedia.org/wiki/CamelCase

Public Custom Function: A Public custom function is the first called function, or parent, within a
custom function group. There are many instances where a ‘collection’ or ‘group’ of custom
functions are used to provide a full set of functionality. In other cases a custom function may
exist by itself. In either case the custom function that is called directly is considered to be a
Public custom function.

Private Custom Function: A private custom function is never called directly in a calculation. It is
only called from another Public custom function. Private functions are subordinate to Public
functions. It is very possible to have a custom function that is always private. For example, one
might create a custom function that is designed to be a ‘helper’ function to multiple other
functions. In other words, it will only ever be used in conjunction with another custom function.

Primary Table Occurrence: PTO is a special table occurrence. The PTO serves as the
designated table occurrence that will be used when creating calculations that are internally
referenced. Those calculations are derived from data contained within the context of the table
itself and never data from another table.

Spacing Table: A technique used to create ‘labels’ or ‘separator’ tables within the Define
Database dialog. This technique uses tables that contain no fields for the purpose of grouping
and categorizing tables and table occurrences.

Table: A collection of data pertaining to a subject, such as customers or stock prices. A database
file contains one or more tables, which consist of fields and records. When you create a new
table, a visual representation, or table occurrence, of the table appears in the Relationship graph.
You can specify multiple occurrences (with unique names) of the same table in order to work
with complex relationships in the graph.

Table Occurrence: A table occurrence refers to an instance of a table on the Relationships
Graph. Keep in mind that all interactions throughout the development environment will interact
with table occurrences. This is the one and only way to ‘address’ a table and its contents.

FileMaker Development Conventions v1.0

- 86 -

Source Table: A table occurrence is associated with a table. The source table refers to the table
the table occurrence is associated with. For example, a table occurrence named
“AdmissionInterface|Classes|ClassList” has a source table named “classes”. Source table will also
be referred to as the “source table name”.

Logical Solution Identifier: LSI is a prefix used for each secondary file and optional suffix for each
primary file in a solution.

FileMaker Group Designator: is a prefix used to identify externally authenticated groups.

Appendix D - Syntax Legend
The FDC document uses a specific style to indicate the various components of any syntax used
within the various sections. The following table explains the various notations.

FDC Syntax Legend

 No Enclosing Characters indicates optional and natural/free form naming
[] Enclosed components are intended to be used as displayed
{ } Enclosed components are optional and definable by developer
() Enclosed components are optional but have a defined or inferred value if used
< > Enclosed components are intended to be supplied but have a defined or inferred value

<< >> Enclosed components are intended to be supplied and definable by developer

