
Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Technology Brief

Upgrading to
FileMaker 8:

Migration Foundations
and Methodologies

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: page 1

About This Technology Brief

It is the intent of this technology brief to help the experienced FileMaker® developer better understand and
prepare for migration to the FileMaker 8 product family. Reading this document will assist you in planning, preparing
for, and executing a strategic approach to migration.

Originally compiled, edited and principally authored by Danny Mack, President of New Millennium Communications,
Inc., a FileMaker Solutions Alliance Partner, this paper is part of a series of technology briefs written by developers
for developers, to assist in migrating existing solutions to the new FileMaker 8 product family.

For additional technical materials, please refer to printed and electronic manuals and online help that ship with
FileMaker Pro 8, FileMaker Pro 8 Advanced, FileMaker Server 8, and FileMaker Server 8 Advanced.

Please Note: This technical brief is relevant to both FileMaker 8 and FileMaker 7 products.

Table of Contents

I. Overview ..5

II. Foundations
• Leveraging the Value Proposition of FileMaker Pro 8 ..9
• The FileMaker 8 Relational Model ...20
• File References in FileMaker Pro 8 ..41
• Scripting Issues Encountered When Migrating to FileMaker Pro 8 ..56
• Security and Access Privilege Issues ..63
• “Record Ownership” in Converted Solutions: Opening and Committing Records73
• Migration and Web Publishing ...85

III. Methodologies
• Conversion Basics ..89
• Adding a New Interface File to an Existing Solution, Later Consolidating Tables 99
• Case Study: Migrating Using the Hub & Spoke Approach .. 107
• The Separation Model: A FileMaker Pro 8 Development Model .. 112
• Bridging .fp5 and .fp7 .. 128

IV. Appendix
• Conversion Issues & Resolutions ..A1

Foreword
This document assumes that the reader is already familiar with the basic features of FileMaker Pro 8, and has read
the Tech Brief entitled “Upgrading to FileMaker Pro 8 – Migrating Existing Solutions.”

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The information in this compendium of articles is the result of a hard-working team of FileMaker, Inc. employees
and independent developers who have designed, explored, and tested FileMaker Pro 8 and FileMaker Server 8. It
represents an evolving body of knowledge, one that will mature over the next months and years as the application
is mastered by professional FileMaker developers building solutions.

It has been a privilege to work with this team.

Danny Mack
Boulder, Colorado
March 2004

© 2005 FileMaker, Inc. All Rights Reserved. FileMaker is a trademark of FileMaker, Inc., registered in the U.S. and
other countries, and the fi le folder logo is a trademark of FileMaker, Inc. All other trademarks are the property
of their respective owners. Mention of third party products and companies is for informational purposes only and
does not constitute an endorsement nor recommendation. Product specifi cations and availability are subject to
change without notices. (DocV3)

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, AND FILEMAKER,
INC. DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE,
OR THE WARRANTY OF NON-INFRINGEMENT. IN NO EVENT SHALL FILEMAKER, INC. OR ITS
SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS, PUNITIVE OR SPECIAL DAMAGES, EVEN IF FILEMAKER,
INC. OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY. FILEMAKER MAY MAKE CHANGES TO THIS
DOCUMENT AT ANY TIME WITHOUT NOTICE. THIS DOCUMENT MAY BE OUT OF DATE AND FILEMAKER
MAKES NO COMMITMENT TO UPDATE THIS INFORMATION.

page 2

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Overview

Brief Synopses of the Sections of this Document

Overview

Foundations
Leveraging the Value Proposition of FileMaker Pro 8 – Michael Thompson
Michael discusses the advantages of FileMaker Pro 8 from the point of view of both developers and business
owners, and addresses the strategic issues associated with migrating to this new technology, including how to
recognize a return on the investment in migration.

The FileMaker 8 Relational Model – FileMaker, Inc. and Danny Mack
A fundamental article of the new relational model, including a comparison to earlier versions of FileMaker Pro,
an introduction to the relationships graph, and an explanation of “context”. It illustrates the new features and
the new rules with easy to follow examples.

File References in FileMaker Pro 8 – Corn Walker
File references are viewable and editable in FileMaker Pro 8 and the issues associated with them are
fundamental to getting your converted solution up and running successfully.

Scripting Issues Encountered When Migrating to FileMaker Pro 8 – Darren Terry
In converted solutions, certain scripts may not function as they did previously. Darren reviews these issues in
detail so that you understand how the behavior has changed, and what to do about it.

Security and Access Privilege Issues – Steven Blackwell
Passwords and groups are converted to accounts and privilege sets, but the rules have changed. Understanding
the details of access privilege conversion is essential to replicating the original behavior or extending it.

“Record Ownership” in Converted Solutions: Opening and Committing Records – Ilyse Kazar
The script steps and other events that cause records to be opened (locked) and committed (unlocked) have
changed signifi cantly. This has major implications for the behavior of converted solutions as well as for new
solution design.

Migration and Web Publishing – Bob Bowers
This is a primer on the realm of FileMaker 8 web publishing, including both Custom Web Publishing and the
entirely new Instant Web Publishing.

Methodologies
Conversion Basics – Danny Mack
Danny presents a step-by-step orientation to the conversion process, including preparation, testing, and the
necessary fundamental tasks for getting your solution “restored” to its original functionality.

page 3

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Adding a New Interface File to an Existing Solution, Later Consolidating Tables – Todd Geist
How does one migrate a solution, most reliably and economically, to an optimal FileMaker Pro 8 architecture?
Todd lays out a step-by-step migration strategy, including a rationale that may leave you thinking: “why would
you do it any other way?”

Case Study: Migrating Using the Hub & Spoke Approach – Molly Connolly & Bob Bowers
In many solutions, the majority of the interface and logic is concentrated in one fi le, the “hub”, or in a few hubs.
It may make sense to consolidate the “spoke” fi les into the “hub” fi les.

The Separation Model: A FileMaker Pro 8 Development Model – Colleen Hammersley & Wendy
King
FileMaker Pro 8 is a dream come true for those who have long advocated the separation of data and interface.
Colleen and Wendy present the new application model in all its glory.

Bridging .fp5 and .fp7 – Ernest Koe
There are many real world scenarios in that it will be necessary for FileMaker Pro 8 fi les to exchange data with
FileMaker .fp5 fi les. There are several technologies that make this possible.

Appendix
Conversion Issues & Resolutions – Team
This is the documentation of specifi c issues that can be encountered in solutions that have been converted to
FileMaker Pro 8, and suggested resolutions (what you can do to replicate the original behavior). The issues are
cross-referenced to the behavior changes in the application documented in the .pdf entitled “FM 7 Converting
Databases”.

page 4

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Overview

Learn FileMaker Pro 8 Before Converting a Complex Solution

As has been stated elsewhere, starting to learn FileMaker Pro 8 by converting a complex solution may be
confusing. It is highly advisable to build some mastery of the new application by fi rst building a new solution.

• Enjoy the ease of creating multiple tables in one fi le

• Explore the effi ciency of the new scripting possibilities, especially script parameters

• Understand the relationships graph and the importance of managing the context from which your
calculations and scripts will evaluate

• Discover the power of the new security model

• Learn your options for solution architecture – with your interface in the same fi le as your data tables, or
in an entirely separate fi le with no tables

Once you have a reasonably good understanding of the new environment, then it becomes appropriate to
consider the approach to take to migrating an existing solution.

A Strategic Approach to the Migration Process

As outlined in the Tech Brief, “Upgrading to FileMaker Pro 8: Migrating Existing Solutions”, there are several
possible approaches to take to migration. Hybrid approaches are possible where one method is used for one
part of a solution while another method is used for another part.

Here is a recap of the approaches, as discussed in the Tech Brief.

1. Convert and deploy, then modify if necessary

2. Modify, convert, test, & modify

3. Add a new interface fi le, and then later consolidate tables

4. Consolidate multiple fi les into a single fi le, starting with an existing fi le

5. Consolidate multiple fi les into a single fi le, starting from scratch

6. Create new fi les – an interface fi le and a data fi le, or multiple interface and data fi les

7. Co-existence of .fp5 and .fp7 fi les

Each of these approaches could be considered separately. Nevertheless, they can also occur as part of a
sequential process. Some of the stages or aspects of the sequence may not apply to your situation, but there
will be situations in which each of these approaches is relevant. Also, for some developers who support multiple
solutions, one approach may apply to one solution while a different approach may apply to another.

page 5

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

1. Convert and Deploy, Modify if Necessary

If you have a relatively simple solution or a solution that is not business-critical, then you may be able to
convert and simply deploy your solution without modifi cation. If some features are broken or there are minor
data problems, you can fi x them as you go.

For more complex solutions, if you try to just convert and run, you may fairly quickly realize that it is not the
ideal approach and start again with a more methodical approach. This document is intended to enable you to
take a sequential approach to a successful migration of your solution.

2. Convert and Restore to Original Functionality (Modify, Convert, Test, & Modify)

Building on the information in the “Migrating Existing Solutions” Tech Brief, and in the “FM 7 Converting
Databases” .pdf that comes with FileMaker Pro 8 and FileMaker Pro 8 Advanced, you can systematically prepare
fi les for conversion and follow an iterative approach. Making innocuous (or even benefi cial) changes to your
solution in FileMaker Pro 6, and then converting, testing, modifying in .fp5 again, re-converting, and testing,
until you are satisfi ed that you have done as much as is practical and effi cient in the .fp5 format. You can then
do the remaining tasks in the new .fp7 fi les, test, and deploy. See the section on “Conversion Basics” for more
detailed information. The foundational information in the sections on File References in FileMaker Pro 8, Scripting
Issues Encountered When Migrating to FileMaker Pro 8, Security and Access Privilege Issues, and “Record Ownership” in
Converted Solutions: Opening and Committing Records, are all essential reading.

There is a fi nite set of issues that will need manual attention to enable converted solutions to operate similarly
to the way they did in FileMaker Pro 6. Not all of these issues will affect all solutions.

Just as important as the process of manual modifi cation, is the methodology used for testing your solution.
Depending on the scale of a solution, it may or may not be feasible to test all permutations of the features
of a solution. Scripts may work reliably if performed in a certain sequence, but not if performed in a different
sequence. It will be most effi cient and reliable if you, the developer, understand the issues that need to be
addressed and then systematically and completely evaluate, and modify if necessary, all instances of an issue in
your solution. Analysis tools will make it practical to do this.

Some tools are available now for automating the modifi cation of fi les, and more tools will emerge.

3. Add a New Interface File and then Consolidate Tables

One of the key advantages of FileMaker Pro 8 is the ability to see and manage your database structure (or
at least large sections of it at a time), in a graphical interface. Your multi-table business processes can be
represented visually and, thanks to many enhancements to the available tools, managed effi ciently and reliably.

page 6

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

A new interface fi le can be added to an existing solution, “pointing” at the data tables in the old solution,
thereby providing a functional and appropriate environment for enhancing your solution, leveraging the power
and optimal solution architecture of FileMaker Pro 8. You can later consolidate your data tables into one fi le
(or a few fi les) and re-point your interface fi le. This method has the added benefi t of not breaking the existing
functionality of converted solutions while allowing the developer to explore the power of FileMaker Pro 8 in a
separate fi le. See the section on “Adding a New Interface File to an Existing Solution, Later Consolidating Tables” for a “Adding a New Interface File to an Existing Solution, Later Consolidating Tables” for a “Adding a New Interface File to an Existing Solution, Later Consolidating Tables”
detailed treatment of this method.

4. & 5. Consolidating Files

If you are absolutely sure that you will be consolidating the data tables and can afford to wait until you have
revised both the table structure and the interface before using the new solution, then you may want to start by
building a new fi le with multiple tables, but be warned that for a complex solution it may not be very effi cient
unless you have already mastered FileMaker Pro 8.

There are advantages to having fewer fi les, for simplicity and manageability. You may want to optimize your
calculations or the way that you access related data. Depending on your solution, you may want to consolidate
your data tables and fi elds into a single fi le or into a few fi les, either by starting from a single existing fi le, or by
starting from scratch, bringing over just the data fi elds, and selectively bringing over other fi elds, then copying
layouts and importing scripts, or writing new scripts.

There are a number of technical details that are necessary to understand to achieve this migration strategy
successfully. There is good information about these issues in the sections on “Adding a New Interface File to an
Existing Solution, Later Consolidating Tables” and in Existing Solution, Later Consolidating Tables” and in Existing Solution, Later Consolidating Tables” “Case Study: Migrating Using the Hub & Spoke Approach.”

6. Create a New Solution (Entirely Rewrite)

Starting with new fi les is most appropriate for a new business problem or an isolated information domain. It
could be appropriate if you want to take full advantage of the new FileMaker Pro 8 possibilities and you can
afford to wait to complete your redesigned solution before deploying. It is also appropriate if the features of the
original solution are obsolete or poorly designed in the fi rst place. The foremost requirement when designing a
new solution is to determine your solution architecture. The articles on The FileMaker 8 Relational Model and The
Separation Model: A FileMaker Pro 8 Development Model are both essential reading.

7. FileMaker Pro 8 Co-existing with Earlier Versions of FileMaker Pro
In organizations with a large number of FileMaker Pro fi les and multiple solutions (sets of fi les), it may be
necessary to convert some fi les before others. If there are dependencies between solutions in different
departments or business domains, it may be necessary to employ a technology that enables the exchange of
data between FileMaker Pro 8 fi les and FileMaker Pro 5/5.5/6 fi les. See the document on “Bridging .fp5 and .fp7”
for more information.

page 7

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Database Design and Evolution
A primary idea expressed throughout this document is that it may be cost-effective and most practical to fi nd
multiple points in the migration process when your solution can be stable and functional. This will provide benefi ts
to your organization if you are an in-house developer, and will allow you to more quickly take advantage of
FileMaker Pro 8 if you are an independent custom or commercial solution developer.

When re-writing a solution from scratch, there will still be a conversion component to the process. At a minimum,
the old solution will most likely be converted to FileMaker Pro 8 prior to importing data into the new solution. It
is possible to export data from an .fp3 or .fp5 fi le to a text fi le and then to import it, but that would not handle the
contents of container fi elds.

Most FileMaker Pro solutions have evolved over time and have been enhanced based on wisdom gained along the
way – both from the insights of the developer and based on feedback from users. Developers’ technical knowledge
increases over time and that is often refl ected in the incremental enhancements to the features of a solution.

The evolution of FileMaker Pro 8 solutions may be similar. In fact, the expertise and knowledge base which exists
about FileMaker Pro 8 is less mature, and it will take a while for best practices and true expertise to develop, so
an incremental approach may prove to be the most reliable way to minimize what will prove in the long run to be
novice errors.

Compounding the advantages of taking this approach is that needs change over time, so that by the time you fi nish
a grand design the priorities may have changed. True business value is often realized by an incremental strategy to
developing new systems.

About the author
Danny Mack is the President of New Millennium Communications, Inc., a FileMaker Solutions Alliance Partner based
in Boulder, Colorado. New Millennium specializes in FileMaker Pro consulting and solution development, and is the
publisher of numerous plug-ins and tools that facilitate the work of FileMaker Pro developers, available at
http://www.newmillennium.com.

page 8

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Foundations

Leveraging the Value Proposition of FileMaker Pro 8
FileMaker®FileMaker®FileMaker Pro 8 represents a new era for the FileMaker Pro family of products. With renewed power and
fl exibility, the product is poised to emerge as a market-leading rapid application development environment—
applicable to all sizes and types of organizations. More than ever, FileMaker Pro 8 allows users with a broad range of
expertise to contribute signifi cantly to database solutions that produce tangible value. Whether the objective is to
create a professional commercial software application or a desktop database that can be extended to the LAN, the
WAN, and beyond, FileMaker Pro 8 certainly meets the need.

From a developer’s perspective, this new version offers tremendous advantages over its predecessors and over
other software development tools. It is important to remember, however, that such advantages are useful only to
the extent that they create value in a particular context. Without a clear understanding of the value proposition, the
FileMaker Pro 8 technical distinctions may be lost in the din of technology offerings, which too often over-promise
and under-deliver. As FileMaker Pro is commonly used in the context of a business or professional organization, the
developer and business manager are well advised to understand the product’s distinct value proposition and learn
how best to leverage that proposition within their particular environment.

What is it about FileMaker Pro 8 that compels its use by organizations’ subject matter experts (SME’s) and
developers? While maintaining its historic ease of use, the FileMaker Pro 8 family of product offers an entirely
new world of innovative and powerful features unlike any other database or software development environment.
Organizations adopting the new tools will see immediate gains from increased fi le size limits, virtually unlimited
number of tables, direct server access, server side processing, robust security, and faster wide area network (WAN)
access. While protecting their intellectual property and helping enhance data confi dentiality and integrity, developers
can now provide end users or administrators with far more fl exibility and many more options for managing critical
business processes. Integrating solutions with existing IS/IT assets is much easier and more fl exible. With powerful
new features such as Custom Functions and Extended Privileges, developers can implement business logic and
business rules across a solution simply by clicking a checkbox. And they can more easily collaborate with other
developers and with subject matter experts without the ineffi ciencies associated with the interruption of workfl ow.
FileMaker Pro 8, FileMaker Server 8 and FileMaker Server 8 Advanced together make for a compelling best-case
business decision as a development and deployment environment.

While it is clear that the new product line has a lot to offer almost any organizational environment, its combination
of ease-of-use, rapid application development, and enterprise level power must be used appropriately if its
full potential is to be realized. The promise of new features and functions does not remove the fundamental
requirements of the software development process nor does it insulate the organizational leadership, management
and other stakeholders from being materially involved throughout. Focused too narrowly on the technology, it easy
to lose sight of the broader organizational objectives. Indeed, if the needs of the organization and market do not
lead the process, then much of the value and potential of the technology will be sacrifi ced.

Whether a subject matter expert turned database designer or a seasoned veteran designs a solution, it is up to
the developer to manage the value delivery process and to create and maintain an environment that is conducive
to realistic expectations. Furthermore, a solution for today’s problem with little tolerance for adapting to
tomorrow’s needs, or one that is diffi cult to use or maintain, quickly loses much of its potential value. This means

page 9

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

that delivery of value must be considered throughout the lifecycle of a project, not simply at solution delivery and
initial implementation. Fortunately, FileMaker Pro 8 is an exceptional development environment for providing value
throughout the lifecycle of a project. Understanding how to get the most out of the technology at each stage of the
process is essential if a solution is to realize its full potential. The intention and complexity of a solution, as well as
the environment in which it will be used, will determine where to look to leverage the value of the new features of
FileMaker Pro 8.

Requirements Gathering: Solving the Right Problem

Organizational constraints are often revealed through secondary symptoms, and in many cases root causes
of problems are not immediately apparent. Furthermore, the symptoms, as well as their underlying problems,
rarely exist in isolation. Invariably other systems can affect and are affected by newly implemented solutions.
Finally, the problems we address today will almost certainly reveal further constraints and produce unintended
consequences. This is why understanding the problems and their contexts is one of the fi rst steps in creating
solutions.

Traditionally, software developers have relied upon requirements gathering and needs assessment processes
to defi ne the objectives and to understand the often-complex relationships involved in designing an effective
solution. Through interviews with end users and business managers, they produce a written specifi cation that
helps the developer and the stakeholders understand and communicate about the project.

In most cases, input from users is gathered through interviews and then translated into text. While this process
can be relatively effective, it assumes that the users are capable of describing their needs in a manner that
is both consistent with the real needs of the project and comprehensible (in all of its detail and nuance) to
the interviewer. It also assumes that both the interviewer and user understand the environment in which the
problem and solution exist well enough to provide an accurate and useful translation. This can be especially
challenging when the developer is unfamiliar with the intricacies of the environment. While the use of drawings
and mock-ups can narrow this communication gap, even with visual aids, the needs gathering process can
involve several iterations of design and feedback in order to accurately assess the details.

FileMaker Pro 8 offers powerful capabilities to augment and assist in the requirements gathering and needs
defi ning process. FileMaker Pro’s ease of use allows even non-technical users the ability to participate more
substantially in the defi ning stage of the process. By using FileMaker Pro as the environment for creating the
visual aids and training users on the use of basic layout tools, those most familiar with the organizational
processes can explore and experiment in real time. Adding and moving layout elements on workfl ow interfaces
and looking at data in different ways can accelerate the process through which understanding of the signifi cant
issues is developed. More importantly, having the subject matter experts involved at this level of exploration
often reveals unrecognized needs and related issues that would otherwise be revealed much later in the
development cycle.

While much of this capability has existed in prior versions of FileMaker Pro, FileMaker Pro 8 promises much
better performance over the wide area network. This means that subject matter experts and developers can

page 10

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

work together from different locations without the use of third-party remote access software. Changes made
by the developer on a served set of fi les will appear to the SME immediately upon committing those changes to
the server (upon returning to Browse mode from Layout mode) and vice versa. Additionally, many of the new
features and capabilities of FileMaker Pro 8 provide improved support for collaboration. Defi ning new fi elds,
for instance, no longer requires denying other users access to the database. This minimizes the disruption to
other users as SME’s and developers collaborate to understand and defi ne the requirements of a solution. It
also opens up the possibility for multiple teams to be working simultaneously with the same set of fi les. This
real-time development environment offered by FileMaker Pro 8 can dramatically shorten the iterative cycles of
communication involved in the requirements gathering process.

Multiple tables in a fi le and the relationships graph are two other new features available in FileMaker Pro 8 that
can enhance the requirements defi ning process. Developers can explore and demonstrate data architecture
without the time consuming hassle of creating individual related fi les. Multiple tables of data are quickly
created in the same defi ne fi elds session (no need to go back and forth from one fi le to another to add fi elds
to different tables). Once rough table structures are in place, the relationships graph provides a very effi cient
means for defi ning relationships between tables. The fact that relationships are now bidirectional means that
there is no need to create reverse relationships; further reducing the time spent in early conceptual stages.

The relationships graph also provides an effective means for communicating the data structure to users and
other design team members. Let’s face it; complex relational database design does not come naturally to
everyone. Yet even database neophytes understand the need at some level for organizing data in a certain
manner. A picture paints a thousand words, and providing surface level data requirements in a graphical format
can quickly accelerate the understanding of more complex data structure. A well-organized relationships graph
provides a visual overview of the architecture, which can then be used to explain it to technical and non-
technical stakeholders alike. Expanding on the architecture in real time by creating new table occurrences and
relating them to the existing structure is also a powerful form of communication. Remember too that what is
created in the relationships graph is not simply a visual aid because the table structure it defi nes is viable in and
of itself. Sample data can be entered or imported into the tables in order to more clearly demonstrate how the
structure will actually work.

In prior versions of FileMaker Pro, designing data architecture was something best performed with a fl ow chart
or entity-relationship diagram (ERD). While these will still be invaluable1, the new features of FileMaker Pro 8
make exploring data architecture more accessible. Ultimately, the design of your solution may require several
fi les, each containing a number of tables. In the early stages of requirements gathering and needs assessment,
however, exploring data structure for the purposes of learning and communicating can be accomplished very
effi ciently in a single fi le.

Planning: The Art of Creating Expectations

One promise of FileMaker Pro 8 is shorter development cycles. There are many timesaving new features and
new ways to design quick, effective solutions. Nonetheless, planning what it will take to successfully complete
any software development project is tricky business, and the new and unique nature of FileMaker Pro 8 adds yet
another variable to the planning equation.

page 11

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

In the initial use of FileMaker Pro 8, not all assumptions derived from prior versions or other
development environments may apply. While FileMaker Pro 8 can be used in the same manner as prior
versions, to do so would be to ignore its potential. Because FileMaker Pro is unique in many ways from other
software development environments, different strategies and techniques will be used to produce intended
results. It is easy to think that the uses of the new FileMaker Pro 8 features are obvious, but
effective design methodologies and best practices will emerge only through an experiential
understanding of these features and how they relate to old features and other new features. It will
be necessary to explore new possibilities in data structure, navigational methodology, data integrity, transaction
management, security, workfl ow control, and many other aspects of solution creation before acquiring a good
handle on the factors that infl uence the planning process. While eventually FileMaker Pro 8 will become as
familiar as earlier versions and other tools, it is best to approach its initial use with caution and respect when it
comes to creating and managing expectations for early development projects.

One way to explore the new features and possibilities in FileMaker Pro 8 and learn how to better estimate
time and resource requirements is to subdivide more complex solutions into smaller sub-projects. Take the
quintessential database solution, the contact manager, for instance. Instead of jumping in with both feet (only to
discover late in the game that there is a better way to do most of what is already done), begin with the basics.
What does it take to manage a list of names? How will users enter new names and fi nd existing names? What
is the best way to manage the navigation between list views and entry views? Once you have a functional and
effective name managing solution then add phone numbers. Will each name have a limited or unlimited number
of phone numbers associated with it? What is the best data structure to manage this additional entity?

While this example may be overly simplistic and the approach may seem rudimentary and ineffi cient given the
experience of many developers, it is surprising what can be gained through such a step-by-step methodology.
In addition many of the new features in FileMaker Pro 8 make an incremental process more manageable. Being
able to defi ne multiple tables per fi le, bi-directional relationships, seeing a working relationship diagram in the
relationships graph, the ability to pass parameters from buttons to scripts and from scripts to sub-scripts, all
play a part in making an incremental, learn as you go, approach effective.

Another factor that must be addressed in the planning phase is that of development strategy. The FileMaker
Pro developer of past versions was often programming most–if not all–of a solution him or herself. Thanks to
some of its new features, FileMaker Pro 8 is a much better environment for collaborative development. Multiple
developers or development teams can now access all aspects of a served fi le simultaneously with only minimal
interference. There are also more effective methods for multiple developers or teams to work on separate sets
of the same fi les, bringing them together at a later point in time. Finally, FileMaker Pro 8 is a better environment
for modular design. One developer or team can be working on the contact management module while the
other team works on a separate invoicing module. The two modules can be integrated when the independent
modules are ready.

Planning and defi ning a development strategy is an essential step if appropriate expectations are to be created
and maintained throughout the process. FileMaker Pro’s power and fl exibility, along with its ease of use,
provide many timesaving new features that will eventually shorten development cycles. By providing tools

page 12

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

that make incremental and collaborative development more accessible, greater understanding of development
methodologies can be acquired throughout the development process and a team or multi-developer approach
can be employed to further shorten project completion times.

Design: Where No One Has Gone Before

While the specifi cs of design in FileMaker Pro 8 are discussed in greater detail elsewhere in this document
and in other related materials, it is clear that one of the most signifi cant changes in FileMaker Pro 8 is that
of greater design options. Multiple tables per fi le, removal of the fi fty-fi le limit, increased capacity of text and
container fi elds, increased fi le size, multiple windows per table, a new security model, and a more fl exible and
powerful relational structure are just a few of the enhanced features that will change the way FileMaker Pro
solutions are designed.

While the technical benefi ts of this new functionality may be immediately obvious, the nuances that this new
power brings to the value equation are easily overlooked. With custom solutions, for instance, the increased
granularity of access to the various layers of a FileMaker Pro 8 solution can allow the power-users and subject
matter experts to stay connected throughout its lifecycle. Allowing super-users the ability to design entry
layouts, reports, and scripted processes that meet their specifi c needs while restricting access to areas that may
compromise the integrity of the solution is now more manageable.

With commercial solutions or solutions that will require ‘upgrades’ over time, the ability to separate data from
structure (both interface and logic) is much easier in FileMaker Pro 8 than in prior versions. The developer
needs to only replace the structure fi les as a part of an upgrade process. Separate structure fi les that continue
to work with the customer’s existing data fi les will eliminate the need for complex and unwieldy import
routines.

FileMaker Pro 8 also lends itself to a modular approach to solution design. With this approach, a defi ned
set of functions is contained in a fi le or set of fi les, constituting a module. Each module is designed to allow
other modules to access its data while safeguarding its functionality. A contact management solution built by
one developer, for instance, can be designed to allow an invoicing module developed by another developer
to interact with its data. A sales reporting module might access data from both the contact management and
invoicing systems. The value of this approach is certainly evident in commercial applications as many developers
can leverage their specifi c expertise and solutions in combination with those of other developers. Furthermore,
a developer can allow other developers access to needed information and functionality without allowing access
to the entire solution, protecting both the stability of the module as well as the intellectual property.

Other development environments can also benefi t from a modular approach. With a well-developed set of
design principles, multiple SME’s and developers within an organization can develop modules that deliver specifi c
functionality, without compromising other development efforts or ‘live’ systems. A mix of commercial modules
with custom modules or add-ons might be the best way to deliver value when meeting an organization’s needs.

These design methodologies and others are covered more extensively elsewhere in this and other documents,

page 13

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

and new design methodologies may emerge as the use of FileMaker Pro 8 matures. Nonetheless, it is clear that
one of the strongest values delivered by this new technology is that of versatile design. The way that solutions
are designed in FileMaker Pro is forever changed, and commercial developers and organizations will both reap
the rewards of the product as the technology and its use continue to evolve.

Development: It’s All About Execution

Once the design strategy is in place, FileMaker Pro 8 continues to deliver value by providing a very fl exible
environment for development. Regardless of the rigor with which the requirements, specifi cation and design
phases are completed, unforeseen opportunities and constraints will emerge in the development process.
The earlier these issues surface, the more effi ciently and effectively they can be addressed. The collaborative,
real-time development environment of FileMaker Pro 8 provides many opportunities for optimizing the
development process.

Ultimately, complex solutions consist of components and sub-components that are integrated to work together
as a seamless whole. In prior versions of FileMaker Pro it was often necessary to build complex collections of
sub-components all at once such that it was almost impossible to determine where one component ended and
the next began. FileMaker Pro 8 provides for greater modularity of design, which allows discrete (or semi-
discrete) components to be constructed and tested for later integration with other components. A time clock
module used to capture the time spent on a project, for instance, can be built and tested by both developers
and users before combining it with a time sheets module being simultaneously constructed. Integrating the two
modules can happen through a number of possible design scenarios, which may involve merging functionality
in the same fi le, combining functionality between two fi les, or importing elements from one fi le into another.
In any case, the new features of FileMaker Pro 8 allow the integration of modules to occur in a seamless and
straightforward manner.

The ability to build and test small sub-components and modules represents a signifi cant improvement in the
way FileMaker Pro solutions are developed. It allows for unforeseen issues to emerge through the development
process in a more contained and controlled manner. With adequate testing, the functionality, usability, and
appropriateness of each module can be well vetted before the module becomes immersed in the overall
solution. Catching the problems early on will help accelerate their resolution and keep the problems in one
module from detrimentally affecting other modules.

FileMaker Pro has been a real-time development environment for years. The increased ability for multiple
developers or development teams to access the full functionality of a solution without interfering with other
developers, users, and testers places FileMaker Pro 8 in a new league. Certainly, more complex and mission
critical development activities might best be orchestrated using separate sets of fi les, but many development
projects can now peacefully co-exist with other development projects, with testing, and even with live use of
the solution. In cases when a second set of development fi les is warranted, the integration of new functionality
into the live fi le set is more easily handled due to advances in script importing, data importing, and copying
layouts between fi les.

While implicit in the above illustrations, the value and leverage of collaborative development should not be

page 14

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

underestimated. Increasingly, there is a strong sentiment in programming communities that team oriented
development produces signifi cant advantages over the single developer approach. Combining developers
with other developers or developers with SME’s in the code writing process can enhance the quality of the
development in many ways. Two participants focused on the same problem and bringing different perspectives
are more likely to uncover issues early on and to see a wider variety of possibilities than a single developer. If
one partner in a pair is also intimately familiar with the needs of the organization, the demands of the workfl ow,
and the expectations of the users, so much the better.

Finally, the speed of development in FileMaker Pro 8 promises to be outstanding in comparison both to its
predecessors and to other development environments. Many operations, which used to take several fi les, fi elds,
relationships, and scripts, can now be managed with a small handful of these elements. And there are more
robust tools available to simplify much of the repetitive and laborious programming with respect to navigation,
interface control, and data management. Once the understanding of the new feature set is more mature,
developing solutions in FileMaker Pro 8 could take less time than in previous versions of the product.

For the most part, developing software solutions is a process of discovery and adaptation. It is not until we put
the pieces of our plans and strategy together to make them function as a harmonious and well-orchestrated
whole that we understand how the design of a solution will come together. Integral to this process is feedback
from SME’s, users, business leaders, developers and the solution itself as each function is created, tested,
revealed, and integrated into the larger context of other systems and the organizational environment—the
longer the feedback cycle, the greater the possibility for wasted effort and for laying ill-fated foundations. Much
of the new functionality available in FileMaker Pro 8 provides for increased collaboration involving the SME’s
and other stakeholders during the development process. Such involvement tends to shortcut feedback cycles,
allowing the development team more insight into the opportunities and constraints that emerge from the
solution. Ultimately, this saves valuable resources and produces a more effective end result.

Testing: The Often Ignored Ounce of Prevention

Let us face it; no one wants to test software. Inventing the testing procedures alone is challenging enough,
and there are rarely adequate resources to complete the solution much less to test all of the variables.
Furthermore, those who do take the time are often quickly disheartened by unexpected discrepancies in data
and in user interactions, both of which invariably compromise otherwise well-conceived and well-written
solutions. Testing commercial applications is even more demanding, as many customers in an inconceivable
variety of environments will use them. Even large software companies use public beta testing cycles (at times
unbeknownst to end users) to vet and refi ne their solutions.

Regardless of the resistance to and the lack of resources for its execution, there is little doubt that software
testing pays off, and it is not enough to have the development team do the testing. Assuring the stability of the
software requires testing at all stages of the process and by a wide variety of users. In cases where the time,
resource and expertise is not available for a formal testing process, the FileMaker Pro real-time environment

page 15

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

can provide tremendous advantages by reducing feedback cycles and involving end users and subject matter
experts throughout the testing process. Furthermore, as even extensive testing is vulnerable to unforeseen
consequences, after initial beta testing is complete, issues that arise during early implementation can be easily
addressed without interfering with the ongoing use of the solution.

One of the challenges in testing cycles is that feedback from tester to developer takes too long, and planned
testing periods can be interrupted by show-stopping problems. In formal testing environments, professional
testers are employed to run through a series of defi ned sequences in order to test each feature and function,
reporting any issues back to the developer. With FileMaker Pro, developers working directly with users in early
testing cycles can vet initial issues in real-time, identifying and repairing many on the spot in order to keep the
testing process moving. In cases where more research is required to resolve a show-stopping issue, the user can
move on to other aspects of testing or return to other work while the developer fi xes the problem. The fact
that testing and repairs can be done in the deployment environment eliminates the need for compiling cycles as
well as issues that sometime arise from the compiling process.

Because a real-time development environment can dramatically shorten testing cycles, end users and subject
matter experts who may not have time for long testing periods can be more involved. Thirty-minutes of testing
in real-time with user and developer can accomplish quite a bit with respect to evaluating the usability and
effi cacy of implemented workfl ow. Furthermore, a user may identify issues that a professional tester is unable
to see due to the user’s familiarity with both workfl ow processes and expected data. In some situations,
testing can be incorporated into a user’s regular job function, especially after a solution is implemented, when
refi nements are addressed or new features are added.

For many developers and organizations, testing is considered a necessary evil and can be ignored all together
much to the detriment of the implementation. The real-time nature of FileMaker Pro offers the ability to
reframe the testing project, offering new opportunities to make the process more effi cient and effective.
FileMaker Pro 8 extends this capability by allowing access to design functions while others are accessing
database functionality. This gives the developer more options and fl exibility in the testing process as well as
allowing users and SME’s to be involved in a manner that further leverages precious resources.

Implementation: The Art of the Roll Out

Rolling out new software solutions in an organization is tricky business. Even when solutions are well designed
and tested, it takes time to integrate changes into business processes and systems. In addition to the technical
challenges, user buy-in and adoption can present signifi cant obstacles. The more processes, systems and human
beings affected by the software, the more challenging the implementation.

In order to minimize the negative impact and resistance to adoption, many organizations phase in new
functionality incrementally and over time. Whenever possible, even modest software implementations are sub-
divided into discrete implementation units. Once a unit is in place and working, the next unit can be rolled out.
This modular approach allows for multiple stable points throughout the implementation process that deliver
the full value of the software in a timely manner.

page 16

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

FileMaker Pro 8 is an exceptional tool for an incremental roll out strategy. With a modular approach to
design (discussed previously, and in more detail elsewhere), solutions can naturally be introduced module
by module. Additionally, the ability of FileMaker Pro 8 to interact and exchange data with other software
applications and solutions (via XML, ODBC, JDBC, etc.) allows for the development of less complex solutions
by interacting with and leveraging pre-existing systems. Though this might at fi rst appear to be more work, such
a methodology provides an organization with the opportunity to focus at each stage on the functionality that is
most immediately necessary and that will produce the greatest value.

Another advantage to an incremental approach (especially with a tool as new and powerful as FileMaker Pro
8) is that it offers a learn-as-you-grow environment. All aspects of the process, from requirements gathering
to implementation, are bound to mature as each subsequent phase is successfully realized. The needs of the
environment will also be transformed to some extent as each aspect of the software is introduced. Knowledge
garnered from earlier phases in the process will provide better intelligence for use in later phases, ultimately
producing superior results. Creating processes that allow new technical and design intelligence to ‘fold’ back
into prior phases will assure that early work maintains its relevance and viability within the greater solution.

Certainly the timing of the roll out is a critical part of the equation. It is not uncommon for an organization to
recognize the need for a solution late in a business cycle or to wait until the last minute to move forward on
a critical project. Once the decision has been made, it is compelling to think that the solution is required as
soon as possible. The specifi cs of the timing, however, do not fundamentally affect the fact that organizational
processes are best rolled out incrementally and over time. The greater the complexity and number of variables,
including technologies involved, related systems, and personnel, the greater the need for an incremental strategy.
Seeking out multiple stable points along the implementation path provides the best chance for success when
rolling out even modest software solutions.

Maintenance & Evolution: Leveraging the Investment

It has been said that software refi nement is never really fi nished, but simply abandoned. While it is true that a
solution can be engineered far beyond a point of viable returns, there is another side to this story. Solutions
are created to remove constraints. As each constraint is removed, new constraints are revealed. When new
constraints are signifi cant enough to matter, new solutions are required. This cycle of constraint and solution is
further infl uenced by the dynamic nature of both the marketplace and the organizational environments served
by software applications. With few exceptions, software solutions that do not adapt to new constraints and
changes in environment do not continue to produce value over time.

With the time and resources required to produce effective software solutions, it makes sense to use a
design methodology and development environment that support the ongoing maintenance and evolution of
the software system. Again, the FileMaker Pro fl exible, real-time environment facilitates the introduction of
new features and functionality as well as subtle changes and the maintenance of existing code. It is easy to
underestimate the productivity enhancing power of adding or moving a data fi eld on a layout or changing the
fi eld tab order. With FileMaker Pro 8, refi nements like these are just a fraction of what is possible when it

page 17

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

comes to enhancing existing functionality and exploring new possibilities. Because refi nements and alterations
can be made very quickly, a wide variety of ideas can be easily tested for value and viability.

The new features in FileMaker Pro 8 allow the developer to provide access to some or all of the design features
so that super-users and subject matter experts can experiment with new ideas in workfl ow, functionality and
reporting. Because this access is very granular, end users can be given the ability to test their ideas themselves
without compromising the balance of the solution or the data behind it. In some cases, users and subject
matter experts will create new features and functions on their own, in other cases their efforts will produce
prototypes for the developer to refi ne. Regardless, keeping the users involved in the exploration and design
process can yield tremendous value over the lifecycle of a solution.

Solutions that do not adapt to the changing needs of their environment quickly lose their value. Those that can
adapt quickly and effectively to the needs of an organization and its market will continue to produce value over
time. While guidelines for adaptation and evolution must be followed in order to maintain the integrity of the
solution, providing super-users and subject matter experts with the tools they need to experiment and invent
can dramatically increase the value of a solution. FileMaker Pro 8 provides a fl exible, real-time environment that
allows developers to empower the user while protecting the core architecture and data.

Conclusion: Clarifying the Proposition

Due to the transparency of much of the new power in FileMaker Pro 8, many users may continue to design
solutions as they have in prior versions. Others will go directly into the development of large-scale, enterprise
solutions. In either case, and regardless of the outcome, the real value proposition of FileMaker Pro 8 may be
missed.

It’s true: FileMaker Pro 8 marks a new age for the tool and the solutions it inspires. The power and fl exibility of
this new environment, however, comes with a learning curve, increased levels of creativity and insight, and the
requirement of greater diligence and rigor throughout the process. Indeed, learning how to develop elegant and
effective solutions in FileMaker Pro 8 will happen incrementally and over time regardless of the way in which
it is initially approached. Rather than looking at this process as a hurdle or barrier that must be crossed in
order to get to greener pastures, it can be seen as a journey through which both understanding and value are
received. Focusing only on the end results and ignoring or avoiding the steps along the way will diminish both
the experience and the deeper value available.

FileMaker Pro 8 provides an outstanding environment for engaging the process while simultaneously creating
value for businesses and organizations of all types and sizes. As the new features and functions are embraced for
their technical value, it is important to embrace the entire value proposition. This includes setting and managing
appropriate expectations and exercising proper restraint and consideration at each stage of the solution
creation process.

Finally, what the FileMaker 8 family of products represents is a signifi cant leap forward in the maturity and
possibility of the software solutions it supports. Nowhere else do we fi nd a tool so capable of seamlessly
integrating the needs of the single-user desktop database and the enterprise-level solution. Being effective in

page 18

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

this new arena will require the development of a commensurate level of maturity in the way database solutions
and services are delivered. Clearly this is a journey worthy of attention.

About the author

Michael Thompson is the director of Software Sales and Implementation at New Millennium Communications,
Inc., a FileMaker Solutions Alliance Partner. With more than a decade’s experience using FileMaker Pro, he has
helped NMCI and its clients build solutions ranging from single fi le databases to full-scale CRM/MRP systems.

(Footnote)
1 The relationships graph is neither a fl ow-charting nor ERD generation tool, and should not be substituted for
one. There are limitations to using the relationships graph for this purpose, which are inherent to its primary
function. See the document on the FileMaker Pro 8 Relational Model for a more detailed understanding of the
relationships graph.

page 19

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The FileMaker Pro 8 Relational Model

Summary

This document introduces the relational model of FileMaker® Pro 8 and the rationale behind it.

• Pre-FileMaker Pro 3 -- Flat Files
- repeating fi elds – “sub-records” for simple one-to-many relations
- lookup fi elds allow copying of data based on matching key values
- no ability to display data directly from other fi les
• FileMaker Pro 3-6 -- Relational
- repeating fi elds and lookups still supported
- can defi ne relationships from one fi le to another
- can display and reference related records from a directly-related fi le
- must create intermediate calculations to propagate data from more than one relation away
• FileMaker Pro 8 - Relationships Graph
- repeating fi elds and lookups still supported
- can defi ne relations between all tables in a database in a relationships graph
- can display and reference related records from any table in the relationships graph
- relationships graph can span multiple fi les; each fi le has separate relationships graph
- relational operators can be relative (“theta” joins); multiple predicates supported

Pre-FileMaker Pro 3 -- Flat File Model
Before FileMaker Pro 3, FileMaker was designed to be used as a fl at fi le database with only very limited
relational capabilities. A fl at fi le is simply a fi le or table consisting of a set of records (or rows) and a set of fi elds
(or columns). Each record can contain a value for any number of the fi elds defi ned on the table. For example,
one might defi ne an Invoices table where the fi elds are things like Customer Name, Customer Address, Invoice
Date, Invoice Total, etc. One record in the Invoices table exists for each invoice.

These versions of FileMaker Pro had limited
relational capabilities or relational substitutes:
repeating fi elds and lookups. Repeating fi elds
allow FileMaker Pro to store more than one value
for each fi eld and thus create sub-records on
each record. For example, to create an Invoices
table, it is necessary for each invoice record to
hold a set of items ordered on that invoice. To
accomplish this, one could create fi elds Quantity,
Item Description, and Price and then defi ne these
fi elds to have twenty or so repetitions each.
When these fi elds are laid on a form side-by-side
with their repetitions running vertically, it would
then be possible for users to enter up to twenty
items on the invoice and a calculation could be
defi ned to total up the items for the invoice.

page 20

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Lookups allow designers to make
FileMaker Pro look up a value for a fi eld
from the same table or another table
based on matching values. In this Invoices
example, this would make it possible for
the designer to have a separate Parts
table and have FileMaker Pro lookup the
price and description of the item and copy
it over to the appropriate fi elds in the
Invoices table when the user enters a part
number in the invoice.

While repeating fi elds and lookups have
proven invaluable in creating interesting
database solutions in an otherwise fl at fi le
model, a relational model can provide a
great deal more functionality.

FileMaker Pro 3-6 -- Relational Model

One of the more serious limitations with the fl at fi le model and lookups is that it is diffi cult to share common
data. As a result, there is a great deal of data duplication. The same data is needlessly stored in many different
records. This makes the database larger and slower than necessary and this duplicated data is at risk to
becoming out-of-date and inconsistent.

In the Invoices example above, the customer information (name and address) had to be entered for each
invoice even if the same customer information was already entered for a previous invoice. In addition, the
part description and price had to be looked up and copied over to the Invoices table for each item ordered.
Certainly there are times when this might be advantageous -- for example, it is probably best that the part
prices are copied when the invoice is created so that future price changes don’t affect old invoices or that the
customer name and address are looked up so that the invoice is a reliable historic record of the transaction.
However, this is not always the desired behavior. What if you always want the most current data? To produce
a customer statement (a list of unpaid invoices) to mail to a customer, it is important to use the customer’s
current name and address. It is possible to relookup the data periodically but this is time-consuming, does not
guarantee that the data is always current, and requires that the records be modifi ed.

page 21

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

FileMaker Pro 3-6 addresses these issues by
introducing the ability to defi ne relationships
between fi les (tables). A relationship describes
how records in one table are related to records
in another table. In FileMaker, these relationships
are based on simple single fi eld matches -- the
value of one fi eld in a given row is matched against
the values of another fi eld across all rows of a
different table (or the same table in the case of a
self-relationship). In other words, for each “parent”
record, FileMaker fi nds the set of matching “child”
records where a given fi eld has the same value as
the parent record. The set of matching records
could be empty, could be a single record, or could
be a small or large set of records.

In the Invoices example, it would be useful to
take advantage of a relational model to create a
separate table for all the customer data. In the
Customers table, each record would correspond
to a different customer and be identifi ed with a
unique Customer ID. In each record in the Invoices
table, the customer’s current name and address can
be displayed by relationship. This Customer ID can
be used to defi ne a relationship between the two
tables so that we can display current data from the
Customers table without having to copy it over to
the Invoices table.

Further, we can do away with the use of repeating fi elds to hold the individual invoice items on each invoice. We
can create a Line Items table to contain a record for each item by defi ning a relationship based on the invoice
number between the Invoices table and the Line Items table. When we display a record in the Invoices table,
we can use the FileMaker Pro relational capability to display the set of Line Items records which have the same
invoice number as this invoice. By doing this, we eliminate the limitation of having a fi xed number of repetitions
for the item data and we can generate more complex reports and queries involving the set of all line items for
all invoices.

page 22

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The FileMaker Pro 3-6’s relational model is more fl exible and more powerful than its original fl at fi le model.
However, it still has limitations. It is not easy to get a big picture view of the database and all of the relations
between the tables since the designer must defi ne every table’s relations to each of its related tables separately
from all of the other tables. This model makes it diffi cult to do queries involving other tables in the database. It
requires extra work for database designers who want to view, work with, and perform queries across all of the
tables in the database rather than only those directly accessible from each table.

For example, it may be of interest to generate a list of all customers who have purchased a particular product.
To achieve this, it is necessary to do some fairly complex scripting using multiple Go to Related Record steps in
a series of subscripts, building multi-keys in global fi elds with utility relationships at each intermediate table.

It is also a limitation of this model that you cannot directly access fi elds in related tables that are more than
one table away. It is often necessary to create calculated fi elds or looked-up fi elds in order to display data.
Intermediate fi elds are necessary for every fi eld that the designer wishes to access from more than one table away
.

page 23

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The view of the database is different for each table in the database. Each table is only aware of those tables that
it is directly related to and each table is NOT aware of tables that are directly related to it. For example, the
Line Items table is not aware of the relation from Invoices to Line Items. The relations in this model are one-way.

FileMaker Pro 8 -- Relationships Graph Relational Model

The FileMaker 8 product family introduces a more complete relational model to FileMaker Pro. This model is
based on the interface of a “relationships graph” where the tables and relations between the tables form a visual
graph of nodes and connections. This graph allows the designer to see all the tables and all of the relations at
once if desired. For complex databases, the designer may choose to break up the graph into more manageable pieces.

Representations of tables in the database are shown in the graph and relations are defi ned between the tables
and shown as connections between the tables. The connections are drawn between the match fi elds that defi ne
the relation. By requiring that every table occurrence in the graph have a unique name, it becomes possible to
describe very complex relationships involving many intermediate tables with very simple qualifi ed names. As a
simple example, to refer to and display the related part description for a particular line item in the invoice, it
would only be necessary to reference “Parts::Part Description”. If we’re asking for the data from the Invoices
table, the database engine is able to determine the set of relations leading from Invoices through Line Items to
Parts, perform the required join and return the value of the appropriate row. By simply referencing Parts::Part
Description, we’ll get the value of the fi eld from the fi rst matching related record. Using portals we can access
the entire set of related records. This relationships graph model and the fi eld name qualifi cation syntax (“table
name” :: “fi eld name”) is comparable to how many other database systems and languages (including SQL) work
with tables and fi elds in a database. By adopting this model and syntax, FileMaker has become more accessible
to developers accustomed to other database systems and traditional relational databases.

page 24

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Note that this model does not have the limitation of the previous model where it was not possible to directly
access fi elds in tables that are more than one table away. Therefore, it is no longer necessary to create
intermediate calculated or lookup fi elds to copy the data from one table to the next. Each table now only needs
fi elds defi ned for the data that belongs to that table. Furthermore, this model allows much more complex
queries to be performed from any point in the graph involving any number of tables in the graph no matter how
far apart as long as they are somehow related.

Tables on the Graph

One constraint of the relationships graph is that it must not include any cycles. Another way to say this is that
there must only be one path between any two tables. If more than one path were available from one table to
another, then it would not be possible to determine the desired path by simply referencing the desired table.

If an additional relationship is desired from one table to another, it is necessary to add an additional table
occurrence to the graph, based on the same table.

Each occurrence of the table in the graph must have a unique name. Names can be generated by appending
sequential numbers (i.e., Invoices 2, Invoices 3, etc.) or the developer can provide unique names. Note in this
example that there are two occurrences of the Contacts table, named “Customers” and “Vendors”, and also
two occurrences of the Parts table, named “Parts” and “Parts 2”.

page 25

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Note that there is not any requirement that the tables in the graph have to be connected to each other. Tables
can be present in the graph that is not connected to any other table in the graph. There can also be sets of
tables in the graph that are connected to each other but not to other tables in the graph.

“Tables” and “Table Occurrences”

We refer to tables in the graph as “table occurrences” and to the underlying tables as “base tables”.
Nevertheless, in common usage, when referring to table occurrences on the graph we often refer to them
simply as “tables”. At fi rst, this can be confusing, because the concepts of the table as well as the table
occurrence are new. It is similar, however, to the common usage of the word “fi eld” to refer to a fi eld on a
layout. It isn’t generally necessary to refer to a “fi eld occurrence”, since it is implicit based on usage when one
is referring to the fi eld itself versus referring to the particular occurrence of the fi eld on a layout.

Relationships Are Not Directed

The relationships in the relationships graph are not directed. A relationship defi ned between any two tables
works in both directions (not in just one direction as in FileMaker Pro 3.0-6.0). For example, using the same
graph, one can show the related customer data on an Invoices layout and show the related invoices data on a
Customers layout.

However, many options defi ned on the relation are directed. When you defi ne or edit a relationship between
two tables, you have several additional criteria that can be specifi ed including an optional sort order, whether to
allow creation of related records, and whether to delete the related records in one table if a record is deleted
in the other table. These options (and others) must be specifi ed for one direction or the other (or both). For
example, you may wish to specify that if a record is deleted in Customers, that all of the related records in
Invoices are also deleted. However, you probably do not want to delete the related record in Customers when
a record in Invoices is deleted.

External Tables

An important feature of this data model is that the tables in the relationships graph do not need to exist in
the same FileMaker Pro 8 fi le as the graph. A table that appears in the graph may actually exist in a different
FileMaker fi le. This means that layouts and scripts can be created in the same fi le as the graph to work with the
tables in the graph while the data is pulled from an entirely different FileMaker Pro 8 fi le.

Multiple Tables, Multiple Files, and Multiple Graphs

Before FileMaker Pro 8, each fi le contained a single table. Therefore a database of multiple tables was necessarily
made up of multiple fi les. However, any particular fi le could be used as part of multiple databases. For example, a
Zip Code (Postal Code) table might be shared and referenced by several different databases.

page 26

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The data model provides for the defi nition of many tables in a single fi le. Therefore, an entire database of many
tables can be wholly contained in a single fi le on disk or can span many fi les, some of which have multiple tables.
FileMaker Pro 8 allows the user to create and use fi les with various numbers of tables. A fi le could have only
a single table and appear much like fi les from previous versions of FileMaker Pro, or it could combine multiple
tables into one fi le and still access tables in other fi les.

The important thing to note here is that, just like in previous versions of FileMaker Pro, each fi le has its own
view of the relations of the database. This means that each fi le has its own relationships graph that may or may
not correspond to the relationships graphs of other fi les in the database. For example, the relationships graph
given earlier of Invoices, Line Items, Customers, and Parts being all related together might be the relationships
graph of just the Invoices fi le. The Parts table might exist in a separate Parts fi le and have its own independent
relationships graph involving a self relation to show parts made up of subparts. The design and organization of
the database is up to the designer.

The fi rst reason that each fi le has its own relationships graph is to provide backward compatibility with
databases created in previous versions of FileMaker Pro. In the relational model of FileMaker Pro 3-6 each fi le
contains the set of relations between its table and the tables in the other fi les. There was no requirement that
a given table had to defi ne the same set of relations to other fi les that were defi ned to it. This is also true with
the relationships graph model. Not only does this ability make conversion of databases to FileMaker Pro 8
possible, it also is very reasonable. There is no reason for a fi le containing a Zip Code table (or Employee list,
etc.) to be aware of and defi ne reciprocal relations to every other table that has a relation to it.

The second reason that each fi le has its own relationships graph is that FileMaker Pro has always allowed
each FileMaker Pro fi le to be opened and modifi ed independently of all other FileMaker Pro fi les. FileMaker
Pro 8 does not require that all fi les referenced or all fi les that reference a given fi le be present in order to
use or modify that fi le (though it will look for referenced fi les which are missing, the developer can cancel
and proceed). FileMaker Pro 8 also does not require that one have design access to all fi les involved in the
database in order to make design changes to one of the fi les. This is really important when modifying a fi le that
is accessed by many other databases. It would be unreasonable to require all the other fi les to be updated to
accommodate schema changes. Therefore, each FileMaker Pro 8 fi le still has its own set of relations (in the form
of the relationships graph). The relationships graph in each fi le can be modifi ed independent of whether any

page 27

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

other fi les reference this fi le.
It is worth noting again that a relationships graph need not be fully connected. There can exist in the graph
groups of tables that are connected to each other but not to other tables in the graph. Therefore, a single fi le
can act as if it has multiple relationships graphs. Each disconnected sub-graph is, in a way, its own independent graph.

So, to summarize, a database can be built on one or more fi les. Each fi le can contain zero or more data tables.
Each fi le has its own relationships graph that can contain disconnected graphs. Scripts and layouts defi ned in the
same fi le can all take advantage of that fi le’s relationships graph, as can calculations in tables that are in the same
fi le as the graph.

Separate View and Data Files

A relationships graph can include external tables (tables in other fi les) and it’s not necessary to have any tables
defi ned in a fi le at all (you can delete the initial default table). This means that it is possible to create a FileMaker
Pro 8 fi le that contains no data tables at all but has a relationships graph that relates a number of tables defi ned
in external fi les. This fi le can still have a complete set of layouts and scripts that make use of the data tables in
the graph. The result is that all the data tables could be in one fi le and all the layouts and scripts could be in
another fi le.

This allows a developer to easily replace the “layouts and scripts fi le” without affecting the data fi les. However,
there is a limitation here. The fi eld defi nitions are part of the defi nitions of the data tables and are thus part
of the data fi le. This means that changes to the data table fi elds must still be made in the data table fi les
themselves.

Using the Relationships Graph

One implication of this relationships graph model is that it is always necessary to provide the context from
which references in the relationships graph should be evaluated. For example, each layout in a database fi le must
be defi ned to display records from a particular table or a particular occurrence of a table in the graph. Once
this starting point has been established, it is then possible to reference any fi eld in any table in the graph as long
as it is related (even very indirectly) to the starting point.

page 28

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

This is true for all fi eld references in the database regardless of whether that fi eld is on a layout, in a script, via
a calculation, part of an export order, etc. There must always be some way to establish the context (a particular
table in the graph) from which all references to other fi elds in the graph are to be interpreted.
For layouts this requirement is straightforward in that part of the defi nition of the layout is the table that the
layout is displaying data from. (This is necessary anyway to support multiple tables per fi le.) Afterwards, any
reference on the layout to any fi eld from any table in the graph is interpreted relative to that layout’s defi ned
table. This defi nition can be changed after the layout is created as well since FileMaker Pro 8 will still be able to
interpret all the fi elds on the layout from the new table as well. If, at any time, a fi eld is referenced which is not
related to the layout’s table, then an “<Table Missing>” message is displayed in place of the fi eld’s data, much like
the messages in FileMaker Pro 3-6 to report that a fi eld is missing, a fi le is missing, or the user does not have access.

For calculations, it is necessary to specify where in the relationships graph the calculation’s fi eld references
should be evaluated from. In the case of calculations defi ned as part of a fi eld’s defi nition, the base table is
already known -- it is the table that the fi eld is defi ned in. However, if the table appears in the graph more than
once, it is still necessary to specify which occurrence of the table in the graph should be used to evaluate the
calculation.

A Complex Example

The following is a more complex example that can be used to demonstrate some of the power and some of
the intricacies of using a relationships graph. This database is intended to manage classes, students, teachers,
assignments, and grades.

We can start with the basic tables: Classes and Students. Since each class will have many students enrolled in it
and each student will be enrolled in multiple classes, we need an intermediate table, Enrollment, to provide the
pairings in this many-to-many relationship.

Now, it’s worth noting that someone who does not have a lot of experience with relational database design
could stop here with these tables and have a perfectly reasonable solution for tracking enrollment of students
in classes. This person might also create additional tables for teachers and assignments and not even try to
relate them all together in some meaningful fashion.

page 29

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The graph we have so far allows us to create a layout based on the Classes table where we show the set of
students enrolled for each class. This would be accomplished by specifying the Classes table when creating
the layout. (The table assignment could be later modifi ed in the Layout Setup dialog.) Then, a portal would be
created on the layout and this portal would be defi ned to draw its records from the table Students. Note that
it is never necessary to specify any of the intermediate tables. By specifying a table in the relationships graph,
FileMaker Pro 8 can determine the set of relations between the starting table and the requested table to fi nd
the set of related records. In this case, the Enrollment table is the only intermediate table in the set of relations
between Classes and Students. To complete the creation of this layout, a set of fi elds from Classes (like the class
name) and a set of fi elds from Students (like the student name) would be placed on the layout as desired. In this
same manner, we can create a layout based on the Students table that shows the set of classes each student is taking.

This example can be taken further by adding in a table for Teachers that also benefi t from a one-to-many
relationship. Each teacher can teach many classes but each class has only one teacher.

Now this allows us to modify our layout based on the Classes table to include the name of the teacher
assigned to this class by merely placing the Name fi eld from the Teachers table (Teachers::Name) on the layout.
Since the relationships graph specifi es the set of relations between Classes (which the layout is based on) and
Teachers, FileMaker Pro 8 can perform the necessary operations to come up with the set of matching records.
If Teachers::Name is placed directly on the layout (not in a portal), FileMaker Pro 8 will display the data from the
fi rst matching related record. The fi eld Teachers::Name could also be added to the Students layout just as easily
to display the teacher’s name for each class that the student is taking.

page 30

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Layout based on Students displaying portal to Classes, including fi eld from Teachers

Now add a table of assignments and relate these to the Classes table with a one-to-many relationship.

Now we can create another layout based on the Students table (or modify the existing one) to show all the
assignments for each student. Note the complexity of this relationship between Students and Assignments
but that it is not necessary to deal with this explicitly once the relationships graph is provided. Just as in
the previous examples, we can create a portal of assignments in the Students layout and add fi elds from
Assignments directly. In the previous FileMaker Pro relational model, we would have to create relations in each
table’s fi le and create a lot of intermediate fi elds in each of the tables between Students and Assignments in
order to propagate the data all the way over from the Assignments table. With a relationships graph, we can just
reference the desired fi eld directly.

Context for Fields Displayed in a Portal

However, displaying the Class Names for each of the Assignments in the same portal cannot be accomplished
simply by placing the Name fi eld from the Classes table in the portal. Field values from intermediate tables
in the graph are evaluated based on the layout’s table, not the portal’s table. If the class name is placed in the
portal, then every row will display the same value, that is, the value from the fi rst related class, which is not
what is intended.

page 31

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Layout based on Students displaying portal to Assignments, including fi eld from Teachers

Note the incorrect value in all rows in the Class Name and Teacher Name columns.

To display fi elds in a portal correctly, the fi eld must be in the portal’s table or in a table beyond the portal’s table beyond the portal’s table beyond
in the graph (“beyond” from the perspective of the layout’s table). To display the class name that is related to
the Assignment, it is necessary to create another table occurrence of the Classes table, and to relate that table
occurrence to the Assignments table.

page 32

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Layout based on Students displaying portal to Assignments, including fi eld from Teachers

The following rule is used to determine what record (and thus table) to use as the starting point for referencing
fi elds in the context of a portal:

If the fi rst relationship in the path used to get from the portal record’s table to the fi eld’s table is the same as
the one used to get to the layout’s table, the window’s current record (and thus the layout’s table) will be used
as the starting point for evaluating that fi eld’s references. Otherwise, the portal row’s record (and thus the
portal’s table) will be used to evaluate that fi eld’s references.

Another way to say this is that the path to the displayed fi eld must include the same full path as that to the
portal’s table, or else only the fi rst related value will be displayed.

Note that this issue does not apply to other uses of the graph, such as displaying individual related fi elds (not in
a portal), evaluating related fi elds in calculations, or using related fi elds in a fi nd request, since in those instances
there is only one starting point and one ending point (one full path) that is involved. It is an issue unique to
portals because of the ability to display fi elds from a table occurrence other than the one that it represents.

Context in the Graph

Now we want to track each student’s scores on each of the assignments. This is going to require another table
(Scores) that is going to identify both the assignment and the student (by their respective IDs) for each score
value. This is where it gets a bit more complex. If we connect the Scores table to the Assignments table based
on the Assignment ID and we connect the Scores table to the Students table via the Student ID, we’re going to
create a cycle in the graph.

A cycle cannot be allowed in a relationships graph since it would mean that there is more than one path
between any two tables in the graph.

page 33

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

For example, if this graph were allowed it would no longer be possible to show the set of students enrolled in
a class by merely defi ning a layout to be based on Classes (the starting point) and defi ning a portal to be based
on Students (the end point). There would be more than one way to get from the starting point to the ending
point and, depending on the data and the relations between the tables, each path may result in a different set of
records.

Since there can be only one path between any two tables in the graph, the attempt to relate one table to
another table more than once must result in the creation of another occurrence of the table in the graph.

page 34

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

In this picture of the graph, we have made the break in the cycle at the Students table so that there are now
two occurrences of the Students table in the graph. There is still only one underlying Students table, but
the Students table appears in the graph more than once and a layout or calculation can make use of either
occurrence by referring to that occurrence by name.

There is no reason that the break in the cycle could not have been made elsewhere in the graph. It would
be just as easy to have the Scores table appear more than once so that one version was related to the single
Students table occurrence and the other was related to the Assignments table. Other organizations are possible
as well. The designer is free to choose whichever makes the most sense for their solution or how the tables
are accessed. In fact, if there is some reason to do so, the designer could break the cycle in several places or
add additional occurrences of several tables. For example, both Students and Scores could be added to the
graph a second time if desired so that Scores and Students 2 would appear in the graph as in the diagram
above and Scores 2 could be added to the graph in a relation with Students. This would allow the designer
to take advantage of the relation between Students and Scores 2 or that between Scores and Assignments as
appropriate in different places in their solution.

With the Scores table integrated in the graph, it is possible to see once again how data from any table in the
graph can be used anywhere else in the graph. For example, a layout based on the Students 2 table can show
all scores that the student has received, and, in the same portal, display the assignment names, class names, and
teacher names from their respective tables.

page 35

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Layout based on Students 2 displaying portal to Scores.

Now that a table is present in the graph more than once, notice how the choice of the starting point matters.
To display data for a student, we can choose to base the layout on either Students or Students 2. If you created
a layout on Students and then created a portal showing records from Classes you would get the set of classes
that the student is enrolled in since that is what the relationships between Students, Enrollment, and Classes
defi nes. Now if you were to change the layout to be based on Students 2 and leave the portal displaying Classes
you will get something different. You will get the set of classes for assignments for which this student has a
score. (Students 2 --> Scores --> Assignments --> Classes) Since this student may not have completed all of the
assignments for all of the classes or not all of the classes even have assignments, this set of classes may not be
the entire set of classes that the student is enrolled in. (If you ask a different question, you may get a different answer.)

Now let us introduce a list of prerequisite classes for each class and a one-on-one buddy system for the
students. For the prerequisite classes, we need yet another many-to-many relationship but this time between
Classes and itself which introduces another occurrence of the Classes table. For the one-on-one buddy system,
we need a one-to-one relationship between Students and itself -- a one-to-one relationship does not require an
intermediate table.

page 36

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The user interface of a portal makes it possible to display the power of the relational model very directly, but
note that these same relationships can be leveraged in scripts and calculations without ever displaying the results.

Using Relationships For Queries

The relationships graph model lends itself well to queries. As described earlier, any number of tables in the
relationships graph can be referenced directly. By simply referencing a fi eld in a table on the relationships graph,
FileMaker Pro 8 can evaluate the relationship between the tables to produce the appropriate query results as
requested.

The context of a fi nd operation is dependent on the current layout at the time the fi nd is performed. This is
true in a scripted Perform Find step as well as in a manual fi nd. A “Go to Layout” step may be necessary, even if
the layout is not displayed, to set the correct context for a scripted fi nd.

The relational model also supports the ability to defi ne relationships that are based on matching rows on a
relational operator other than equality (i.e., greater than, greater than or equal, less than, less than or equal, or
not equal). FileMaker Pro 8 also supports relationships with multiple match fi elds.
Relationships based on multiple fi elds, or multiple “predicates”, along with relative operators, add extraordinary
power to the relationships graph.

For example, you can place a portal on a layout based on a table occurrence titled REPORT.Customers (which
is based on the Contacts table), displaying all invoices to that customer for a certain date range. In FileMaker
3-6, this type of relationship would require complex calculated keys and/or large indexed multi-keys. However,
in FileMaker Pro 8, it can be done with one relationship, two global “fi lter” fi elds in the Contacts table, and no
additional indexed fi elds.

page 37

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The relationship will appear in the graph like this:

Ad-Hoc Queries

The relationships graph described so far represents the set of relations that the designer of the database
defi nes as part of the construction of the database. These relationships are invoked when references are made
from one table in the graph to another. However, there can be times when it may be desirable to perform a
query which defi nes an entirely different set of relationships -- a set of relationships not represented in the
relationships graph. This is an ad-hoc query and the relationships graph model supports it. Such a query can be
specifi ed using a query language like SQL. The query includes the specifi cation of the relations between various
tables, as in this simple example:

SELECT Customers.Name, Invoices.InvoiceNum FROM Customers, Invoices
WHERE Customers.CustomerID = Invoices.CustomerID;

One method by which ad hoc queries can be posed to FileMaker Pro 8 is through the FileMaker Pro 8 ODBC
interface.

It should be noted that the database’s relationships graph can still play a part in ad hoc queries. Unlike most
traditional databases, FileMaker Pro 8 supports the defi nition of calculated fi elds as part of the table. These
calculated fi elds can reference fi elds in related tables as defi ned by the relationships graph. Therefore, an
ad hoc query that defi nes its own relations between tables makes use of the database’s relationships graph
inadvertently if the query references a calculated fi eld that references a related fi eld. However, this dependency
on the relationships graph is entirely transparent and is merely part of the defi nition of the calculated fi elds.

page 38

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

File Conversion

The automated conversion of FileMaker Pro 3-6 fi les that have relationships defi ned is possible since each
relationship in the old fi le corresponds to a relation in the relationships graph of the new fi le. The names of the
relationships in the old fi les simply become the names of the table occurrences in the relationships graph.

Prior to conversion, the four FileMaker Pro 3-6 fi les make up an Invoices database. The Invoices fi le is related
to the Customers and Line Items fi les and the Line Items fi le is related to the Parts fi le.

The result of automatic conversion of four fi les in a FileMaker Pro 3-6 database to the relationships graph: each
fi le still has one table and each fi le still has a set of relationships to the tables in the other fi les, only now the
relations appear in the relationships graph. In the fi les that did not have any relationships defi ned, only each
fi le’s own table appears in the graph.

In this example, each of the four FileMaker 3-6 fi les were automatically converted and a relationships graph was
generated for each fi le that corresponds to the set of relationships in the original fi les. The conversion process
does not try to eliminate all the intermediate calculations that the designer created in the previous relational
model and it doesn’t try to coalesce the relationships graphs of each of the fi les. The conversion process just
brings the fi les forward and they continue to function as before. Each fi le still has only its view of its directly
related tables. Those fi les that had no relationships to the other fi les in the database are left with graphs
containing merely the one table in that fi le.

page 39

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

After conversion, the designer may decide to rework their database to take advantage of the new relational
model. For example, they may wish to add the Parts table to the relationships graph of the Invoices fi le so that
they can show part information on the invoice without the need for the intermediate calculations in the Line
Items table. They may also choose to add a new interface fi le to better leverage the power of the new model,
or to consolidate data fi les to eliminate other fi les and take advantage of the ability to have many tables in a
single fi le.

Since the relational model in FileMaker Pro 3-6
only permits direct relationships to be defi ned,
the relationships graph that results from the
conversion process is always a very simple graph
with the fi le’s table appearing with a set of direct
relationships to it (including self-relationships).
Again, the names of the old relationships become
the names of the table occurrences in the graph.
After conversion, the designer can immediately
take advantage of the relational model and create
layouts based on the other tables to show data
from different perspectives. For example, by
creating a layout based on the Customers table,
one can easily create a report showing all the
invoices for a given customer or all the parts a
given customer has ordered. This is made possible
by the relationships graph because there is no
fi xed perspective. Layouts and calculations can be
created from any point in the graph.

(Note that it may not be advisable to create layouts based on the other table occurrences in a converted fi le
until one has a good understanding of how to manage context in scripts.)

page 40

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

File References in FileMaker Pro 8

Introduction

What are “File references”?
A fi le reference is the mechanism FileMaker® Pro 6 and FileMaker Pro 8 use to store the locations of external
fi les, including both FileMaker Pro and in some cases other fi les.

When a solution refers to an external fi le, FileMaker Pro stores a “reference” to that fi le. The reference
consists of an internal ID number and one or more places (paths) to use to look for the fi le when it is needed
again. External fi les might be located on your local hard drive, on a shared network drive (although this is not
recommended), hosted via FileMaker Pro peer to peer hosting, or hosted using FileMaker Server.

In FileMaker Pro 6 the developer never specifi es the fi le reference directly. Instead the developer locates fi les
using the OS level fi le browser or the FileMaker Pro “Hosts” network browser. FileMaker Pro then stores one
or more paths to the fi le depending on the confi guration of the client machine, the location of the fi les, and
whether the “Save relative path only” box has been selected.

When selecting a fi le in one of these dialogs FileMaker Pro makes a determination as to whether this
constitutes a new fi le reference or whether it can reuse an existing fi le reference. This determination is based
on the fi le name and the path to the fi le.

In FileMaker Pro 6 there are four common path types stored within a fi le reference: Relative, Absolute,
Windows Network, and FileMaker Network. A single fi le reference can store multiple different paths to a fi le,
each storage location corresponding to the four different types of fi le references stored (although in practice
there is likely a maximum of three stored).

What has changed?

One area of change involves how FileMaker Pro 8 identifi es and locates fi les necessary in the operation of the
database solution. FileMaker Pro 8 reveals the concept of a “fi le reference” to the developer and converts the
previously hidden fi le references of .fp5 fi les into now-visible fi le paths for .fp7 fi les on conversion. A thorough
understanding of the mechanisms involved in the conversion of these fi le references will aid the developer in
ensuring their solutions fi nd the correct fi les and are operating effi ciently.

In FileMaker Pro 8 the four basic path types remain, however FileMaker Pro 8 introduces a new method by
which to specify each path type. The limits in FileMaker Pro 6 are lifted and the developer is able to store
multiple fi le paths within a single reference, including more than one path of the same type. Moreover, the
developer is able to specify the search order within the File Reference for locating fi les. This enables the
developer to ensure correct operation of the solution in single-user and multi-user settings as well as in
development and deployment scenarios.

page 41

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Testing conditions
Except when specifi ed, the term “FileMaker Pro 6” will be used to refer to the behavior of versions 5.5 and 6 of
the product. The extension “.fp5” will be used to refer to fi les created with FileMaker Pro 5.5 or 6.

Topics not covered
There is another type of fi le reference that is not covered in this document. FileMaker Pro may also store
references to images, OLE objects, and other fi les in records (e.g. an image in a container fi eld) or on layouts
(an Excel table on a report). These fi le references are stored in a different location and in a different manner
from those used by the application for relationships and scripts and therefore are not covered by this
document. A number of plug-in vendors have solutions for extracting the fi le paths stored in these references.
Consult the FileMaker website, or http://www.fi lemakerplugins.com, for a list of plug-in vendors and solutions.

File References Overview

When are fi le references stored?
File References are stored for three primary uses. The most common times are when creating relationships
to other fi les and when creating scripts that reference external fi les (e.g. Perform Script [External], Open File,
Close File, Import Records). They are also used when defi ning value lists that are derived from another fi le.
Here are the FileMaker Pro 6 dialogs that appear before a fi le reference is created when creating a relationship
or an external script call on Windows.

It is important to note the distinction, however, between manual actions and scripted steps; the former does
not use a fi le reference while the latter does (e.g. selecting “Import Records” from the File menu compared
with the “Import Records” script step).

Each of these operations has the potential to store a new fi le reference or use an existing one depending on
the situation in which they were created. For example, if a relationship and value list are created referencing the
same fi le in all likelihood they will share a fi le reference. If, however, a relationship is defi ned to a second fi le,

page 42

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

the fi les are moved from a local development environment to a hosted deployment environment, and then a
value list is created that references that second fi le then a new fi le reference may be created depending on the
relative location of the fi les, the sharing status of the fi les, and whether the “Save relative path only” checkbox is
checked or not.

What types of fi les do fi le references refer to?
File references are primarily used for FileMaker Pro fi les. A fi le must fi rst be converted to FileMaker Pro format
before you are able to create a relationship to it.

Similarly, a Value List cannot be defi ned to retrieve its values from a non-FileMaker Pro fi le. Likewise the Open[]
and Close[] script steps only apply to FileMaker Pro fi les.

In some cases File References can also store information about other types of fi les that are available. Unlike
the Open and Close script steps, the Import Records and Send Message script steps allow the specifi cation of
other fi les. These fi le references cannot be used by items requiring a reference to a FileMaker Pro fi le.

This is not foolproof however. Because of the extensive fi le location mechanism it is possible for FileMaker Pro
to confuse fi les and fi le references. One of the mechanisms it uses when failing to locate a fi le is to search for a
fi le of the same name but with no extension.

Why might I have multiple references to the same fi le?
When FileMaker Pro is asked to use an external fi le it tries to determine whether a suitable fi le reference
exists already. Usually, if the fi les are in the same place as when a prior fi le reference was initially created, it is
able to reuse the existing fi le reference.

However there are a number of cases where FileMaker Pro is not able to determine that it can use an existing
fi le reference and instead creates a new one. Because this happens behind the scenes it generally does not
cause problems. However it is not uncommon during development to move the solution around on the local
machine or on the server. Although not recommended, sometimes during active development a developer might
have multiple versions of a solution on a hard drive or a copy on the local machine and a copy on the server.
With multiple copies of fi les located in various places it is easy for FileMaker Pro to become confused about
which is the “correct” copy of the fi le. In a typical scenario fi les are fi rst developed locally and then hosted with
FileMaker Server with further development occurring remotely. References to the fi les were initially created
on the local computer so when looking for a particular fi le it is possible that FileMaker Pro will fi nd the “local”
copy rather than the “hosted” copy. This generally manifests itself by the fi le being listed twice in the Window
menu, fi le changes “disappearing”, or the perennial complaint from end users that the data they diligently
entered has gone missing.

It is also possible, during development, to embed the DNS name or IP address of the development machine
in a fi le reference. During development FileMaker Pro is able to locate the fi les. However, during deployment
these fi les may no longer be available and performance may suffer while FileMaker Pro attempts to locate the
fi le across the network. Worse yet is the situation where FileMaker Pro is actually able to fi nd the fi le on the
network rather than the locally hosted fi le. When “correcting” this behavior a new fi le reference may or may
not be created storing the true location of the fi le.

page 43

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

File references in FileMaker Pro 5/5.5/6

Path Types
Before talking about how FileMaker Pro actually searches for fi les it is important to note the types of paths that
might be stored in a fi le and how they differ from one another. The four common path types stored in .fp5 fi les
are relative, absolute, Windows networking and FileMaker networking. On Mac OS, a fi le “alias record” was also
stored in some cases.

Relative
Relative paths indicate where a fi le is located with respect to the current fi le. If two fi les STUDENTS.fp5
and TEACHERS.fp5 are located in the same folder then the path of the STUDENTS fi le “relative” to the
TEACHERS fi le includes only the fi le’s name (e.g. “STUDENTS.fp5”). If the STUDENTS fi le was located in a
subfolder of the folder containing the TEACHERS fi le then the relative path would include the subfolder name
as well as the fi le name (e.g. “:Subfolder:STUDENTS.fp5”, “Subfolder\STUDENTS.fp5”). A relationship from
STUDENTS to TEACHERS under this structure would indicate a similar path format (e.g. “::TEACHERS.fp5”, “..\
TEACHERS.fp5”). Relative paths apply to hosted environments as well. If the fi les STUDENTS and TEACHERS
are both hosted by the same FileMaker Server machine they will have a similar relative path as if they were both
located in the same folder. This is independent of the actual folder structure on FileMaker Server itself.

Full (sometimes called absolute path)
The Full path to a fi le indicates where the fi le was located on a local workstation. Unlike the relative path, the
full path stores the entire location of the fi le including the volume name or drive letter on which the fi le is
located (e.g. “Macintosh HD:Users:Admin:Desktop:Keystone:STUDENTS.fp5”). A full path may be stored in
addition to the relative path unless the ‘Store relative path only’ checkbox is checked, in which case it is not
stored unless the target fi le is located on a different volume/drive than the current fi le. It may also be stored in
conjunction with a network path.

If a full path is stored in a fi le reference it is platform specifi c. FileMaker Pro 6 creates a new fi le reference when
targeting the same fi le on a different platform than the one on which the original fi le reference was created.

Windows Networking
The Windows path is slightly different from the Full path. The Windows path contains syntax that is specifi c
to Windows operating systems (e.g. “C:\Documents and Settings\User\Keystone\STUDENTS.fp5”). As can be
expected, Windows paths are not valid on Mac OS and fi le references that contain only a Windows Network
path will not resolve on Mac OS. If the fi le cannot be found using another stored path, FileMaker Pro 6 will
prompt the user to locate the fi le unless error messages are being suppressed.

FileMaker Networking
Network paths are stored in fi le references under two situations. The fi rst occurs when the fi le being
referenced is located on the network and is selected through the “Hosts” dialog. The second occurs when the
referencing fi le has it’s sharing options set to multi-user and the “Save relative path only” checkbox is not checked.

page 44

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

There are two types of network fi le reference. The fi rst type is the “local network” path and is indicated by an
asterisk (*). The other is the full network address that is either the DNS name of the workstation or the TCP/IP
address. A full network address is commonly visible in the “Perform Script: External” script step where the
name of the fi le is followed by the network path.

Note: While FileMaker Server on Mac OS 9 supports AppleTalk networking and FileMaker Server on Windows
NT supports IPX/SPX networks the scope of this conversion document refers only to TCP/IP networking since
the others are no longer supported in FileMaker Pro 8.

The local network path indicates that the fi le was available in the “Hosts” dialog with the “Local Hosts” option
chosen. The full network path indicates the fi le was located by choosing the “Specify Host...” option when
locating the fi le or that the fi le had its sharing status set to multi-user when the fi le reference was stored. While
the local network path is the more fl exible of the two, a full network path leads to the best performance and is
required in certain scenarios including multi-server partitioning of the database, or host and client in different subnets.

Alias
On Mac OS, an alias record was also stored under some conditions. The alias record could be used to have
the operating system locate the fi le. In typical use, this would have similar behavior to using the relative and full
paths, however Mac OS also has ways of resolving aliases when a fi le if has been renamed but not moved, or
moved but not renamed.

FileMaker Pro 5 “searching” behavior
FileMaker Pro 5 fi le references sometimes would locate fi les other than the ones the developer was expecting.
One of the chief reasons for the “wrong fi le” being chosen is user error. It is possible that a developer, with
multiple copies of the solution on their machine or the network, specifi ed the wrong fi le when creating the
fi le reference. In this scenario it is possible some operations will reference the correct fi les while others
reference the incorrect fi le. The best way to avoid such a scenario is to always zip or stuff (or otherwise make
inaccessible) duplicate copies of a solution. Files should only be available on the network from one host and
hosted fi les should never be available through OS level fi le sharing or on a local machine.

Another reason for the “wrong fi le” behavior in FileMaker Pro 5 was that when locating a fi le, FileMaker Pro
assumed the fi le reference it used was incorrect. That is, if a fi le being referenced was said to be located at “C:
\My Documents\Keystone\STUDENTS.fp5” and it was not found at that location, FileMaker Pro 5 would check
a number of other locations for the fi le along with adding and removing the extension from the specifi ed fi le
name. However failing to locate the target fi le in the location specifi ed by the fi le reference FileMaker Pro 5
may still fi nd fi les by looking in various other locations including the “default” folders and the local network
(the “default” folders include the location in the “Open File” and “Save File” fi le pickers as well as the folder
containing the current fi le and the Application folder). If unable to locate the fi le in the location specifi ed by
the fi le reference FileMaker Pro 5 would check the default folders for the fi le. This behavior is slightly different
between the Mac OS and Windows. In a network situation FileMaker Pro 5 may fi nd the target fi le on the
local volume or drive or in one of the default folders if it is unable to locate the fi le on the same server as the
current fi le or the server specifi ed in the fi le reference.

page 45

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

On the Mac OS, it was possible for FileMaker Pro to fi nd the fi le even after it had been moved to the Trash. This
was due to the alias record for the fi le which enabled FileMaker Pro to locate fi les that had been moved from
their original locations. FileMaker Pro 8 no longer stores an alias to a record when specifying the fi le on Mac OS X.

FileMaker Pro 5.5/6 Save Relative Path Only behavior
Beginning with FileMaker Pro 5.5 a new option was introduced called Save Relative Path Only (SRPO). This
checkbox was added to the “Open File” dialogs to instruct FileMaker Pro 5.5, when creating and storing paths
in fi le references, to only save the relative path.

This option is the default behavior for all new fi le references; in most cases to store the absolute and network
paths one must manually un-check the SRPO checkbox when specifying the fi le. This option is generally useful
because under most development and deployment situations all of the requisite fi les are located on the same
host computer. By only storing the relative path it instructs FileMaker Pro 5.5 and FileMaker Pro 6 to only
look for target fi les in locations relative to the current fi le. While the use of the relative path is applicable to
FileMaker Pro 5 (assuming the fi le reference was created with FileMaker Pro 5.5 or FileMaker Pro 6 and the
SRPO checkbox was not unchecked) the searching behavior does not behave as in FileMaker Pro 5.5 and
FileMaker Pro 6 if the fi le is not located in its relative location.

The actual path stored when the SRPO checkbox is checked varies by platform. Under Mac OS X FileMaker
Pro 6 was observed to only store the relative path if the SRPO checkbox was checked (as is the default). Under
Windows 2000 FileMaker Pro 6 was observed to store both the Relative path and the Windows path when
the SRPO box was checked. However, when searching for a missing fi le the Windows path was ignored and
the SRPO checkbox (and modifi ed search behaviors) were preserved. Note that when creating a fi le reference
the SRPO checkbox is ignored when choosing a fi le that located on a host that is not on the local network.
In this case only the Network Path will be saved in the File Reference. The SRPO checkbox is also ignored
when choosing a fi le located on a different volume or drive than that of the current fi le. In this case the Full or
Windows path will be saved in the fi le reference and, if the current fi le is set to multi-user, the network
path to the host.

The SRPO checkbox not only affects what paths are stored but also how FileMaker Pro 5.5 and FileMaker
Pro 6 will search for fi les when resolving fi le references. Unlike FileMaker Pro 5, when a fi le is not found in the
location specifi ed by the fi le reference and the SRPO fl ag is set, FileMaker Pro 5.5 and FileMaker Pro 6 will
not look elsewhere for the fi le. In this case the “searching” behavior is short-circuited and the target fi le is
presumed missing.

page 46

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

File references in FileMaker Pro 8

Defi ning fi le references

In FileMaker Pro 8, some fi le references are no longer hidden behind the curtain but instead are exposed to the
developer for viewing and editing. A new central area, accessed through the Defi ne File References interface, is
where most references for FileMaker Pro 8 fi les are stored.

The fi le references located in this area are referred to as “named” fi le references. Unlike FileMaker Pro 6 –
where an existing fi le reference may be used by script steps, value lists, and relationships through consolidation
– in FileMaker Pro 8 fi le references for script steps are stored separately from fi le references used by the
relationship graphs and value lists (with three exceptions). There are several entry points for this dialog and it is
possible to add named fi le references without ever having visited the “Defi ne File References...” dialog.

Upon conversion of a solution most of the fi le references you will be dealing with will be located in this central
area. The unnamed fi le references will be stored with the script steps and can be located using the Database
Design Report or some of the forthcoming 3rd party tools.

page 47

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Path Types

Relative path
The relative path in FileMaker Pro 8 is very similar to that in FileMaker Pro 6 with one difference. In FileMaker
Pro 6 the relative path to the target fi le is always “relative” to the current fi le. If the target fi le is on a different
volume, drive, or server than the current fi le then the relative path is not stored.

FileMaker Pro 8 behaves in a similar fashion. If the target fi le is located on the same volume, server, or hard
drive then the reference to that fi le will be stored as a relative path. If the fi le is on a different volume, server, or
hard drive then the appropriate non-relative path is stored.

However, unlike FileMaker Pro 6 the developer has the ability to edit the “relative” path and specify a “full”
path using the “relative” path syntax (e.g. “fi le:/Macintosh HD/Users/Karin/Desktop/fi lename.fp7” or “fi le:/C:/
Documents and Settings/Karin/Desktop/fi lename.fp7”). While this path will resolve correctly for the platform
specifi ed in the path it is not a “cross-platform” full path. While you could specify both “relative cum full” paths
FileMaker Pro 8 will attempt to resolve such a path regardless of the platform that could cause an opening
delay. It is best to use the platform-specifi c full path rather than editing a relative path to make it behave like a
full path.

All converted fi le references consist of at least a relative fi le path.

Full path (absolute)
The full path in FileMaker Pro 8 is analogous to the full and Windows paths in FileMaker Pro 6; the full path for
a fi le reference takes two different forms depending on whether the target fi le is on Mac OS X or Windows.

When transferring a fi le from Windows to Mac OS X or vice versa the full path is not automatically updated,
this must be performed manually. Likewise, if a fi le is to be distributed to both Mac OS X and Windows clients
it may be necessary to include both the Mac OS X and Windows path variants to locate a fi le. While this sounds
like more work on the surface it’s actually a good thing. In FileMaker Pro 6 deploying solutions with fi les located
on a central server was diffi cult to do in a cross-platform environment. With FileMaker Pro 8 it is now possible
to specify both the Mac OS X and Windows paths separately and they will resolve correctly on each platform.

Windows Network
The Windows Network path is a variant on the full path. Generally it is inadvisable to locate fi les on network
shares, however FileMaker Pro 8 provides a mechanism for storing those paths. The syntax is similar to the
windows full path and is specifi ed as “fi lewin://ComputerName/Share/directory/fi leName.fp7”.
Note that there is no “Mac OS X Network” path type as shared volumes are browsed the same as local
volumes; in this scenario you would use the Mac OS X full path.

FileMaker Network
The FileMaker Network path is analogous to the Network path in FileMaker Pro 6. They differ primarily in
two ways, the fi rst inconsequential and the other with a larger impact. The fi rst difference, as with the other
fi le reference types, is in the syntax. FileMaker Network paths must start with “fmnet:/” and include either the
TCP/IP address of the host or the asterisk indicating FileMaker Pro 8 is to search the local network for the fi le.
However the more important difference is that unlike FileMaker Pro 6, in FileMaker Pro 8 you can defi ne more

page 48

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

than one network path to a fi le. This includes combinations of paths to check a specifi ed server and then the
local network as in the following example.

fmnet:/fmserver.company.net/TEACHERS.fp7
fmnet:/*/TEACHERS.fp7

The fl exibility this affords the developer should make deployment of solutions much easier than was previously
possible with FileMaker Pro 6 or only available through third-party tools.

Using fi le references

Named fi le references
Most fi le references of interest are now edited in a central location and accessible through the “Defi ne File
References...” function of FileMaker Pro 8. These fi le references are referred to as the “named” fi le references
to denote how their storage and access differs from the “unnamed” fi le references. With the exception of a few
script steps, all fi le references that can only point to FileMaker Pro 8 fi les are stored as named references. These
include those used by the relationships graph, value lists, and the “Open File,” “Close File,” and “Perform Script”
script steps.

Named fi le references can be defi ned and modifi ed centrally using the “Defi ne File References...” This presents
a challenge to the developer wishing to consolidate and remove fi le references, as they must manually ferret out
each usage of a particular fi le reference. At this time the only method of doing so post-conversion is by cross-
referencing the fi le references with the output of the FileMaker Pro 8 Advanced Database Design Report or
through manual inspection of each table occurrence on the graph, each value list, and each script containing one
of the three script steps mentioned above.

Script step references
Aside from the “Open,” “Close,” and “Perform Script” script steps, fi le references are stored with the individual
script step and are referred to as unnamed fi le references. In general, the fi le references for script steps that
might target a fi le that is not a FileMaker Pro 8 fi le are only modifi able by editing the applicable script/script
step. Those script steps include:

Import Records
Export Records
Convert File
Save a Copy as
Recover File
Send Mail
Send Event

Where named and unnamed references target the same fi le it is incumbent upon the developer to keep them
in sync manually when developing and deploying solutions. This includes fi le references that were consolidated
pre-conversion by File Reference Fixer, as they will be split into named and unnamed fi le references upon
conversion to FileMaker Pro 8.

page 49

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Generally the best option will be to store these as relative fi le paths as this will allow portability of the solution
without need to revisit scripts to redefi ne references. Until tools are created to help centrally manage these
unnamed fi le references the developer will need to manually inspect scripts and cross reference with the
Database Design Report produced by FileMaker Pro 8 Advanced.

Other File references
With FileMaker Pro 8 container fi elds can now store any type of fi le, including other FileMaker Pro fi les. There
are three script steps that use File References that are specifi c to records rather than the fi le itself. These
include the following:

Insert Picture
Insert QuickTime
Insert File

The syntax for the fi le reference for “Insert File” is similar to that of the named fi le references, the exception
being that there is no “FileMaker Network” syntax. The syntax for the “Insert Picture” and “Insert QuickTime”
script steps differs in that they use the words ‘image’ and ‘movie’ respectively in place of ‘fi le’ for each path type
(e.g. “moviemac:/Macintosh HD/Desktop Folder/1984.mov”).

The option to only save a reference to the fi le rather than embedding the fi le in the database is specifi c to
a particular fi eld within a particular record and is therefore not editable within the fi le-specifi c areas that
references are stored. As such, this type of fi le reference is beyond the scope of this paper.

Search order
The search order of the paths within a fi le reference is very straightforward and user-defi nable. Each path for a
particular fi le reference is separated with carriage returns. An example might be:

fi le:TEACHERS.fp7
fmnet:/192.168.0.32/TEACHERS.fp7
fmnet:/*/TEACHERS.fp7
fi lemac:/Macintosh HD/Users/Admin/Desktop/MySchool/TEACHERS.fp7

The search order for these fi le references is simply top to bottom. In the example, FileMaker Pro 8 will fi rst
look for the target fi le in the same folder or on the same host as the current fi le. Failing to fi nd it with the
relative path, FileMaker Pro 8 then searched the network for a FileMaker Server 8 or Host at the TCP/IP
address 192.168.0.32 with the fi le. Failing to fi nd it there, FileMaker Pro 8 then looks for any FileMaker Server
8 or Host on the local network for the fi le. Only after having failed to fi nd it there will FileMaker Pro 8 look
for the fi le on the volume named “Macintosh HD” but only if the system is Mac OS X. If that hard drive is not
available or the fi le is not at the specifi ed location, FileMaker Pro 8 will stop searching for the fi le and, unless
error messages are being suppressed, will display a dialog asking the user to locate the fi le. However, the fi le
reference will not be automatically updated with the new location when specifi ed by the user in this manner.

page 50

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Broken File references
File references that are broken are not automatically fi xed in FileMaker Pro 8 when you are prompted to locate
the missing fi le. The developer, or a user with appropriate privileges, will be required to fi x the broken fi le
references either by editing the script or by editing the named fi le reference.

File References on Conversion

Pre-conversion steps
Before conversion it is sometimes appropriate to create “relative only” fi le references for your scripts,
relationships, and value lists. However, this process can be time consuming and generally creates a new fi le
reference, leaving the developer with the task of cleaning them up if the FileMaker Pro 8 conversion utility does not.

One option a developer has of consolidating and removing fi le references before conversion is through the
use of the third-party tools such as the File Reference Fixer utility that is a part of the MetadataMagic solution
from New Millennium Communications <http://www.newmillennium.com/>. This tool will allow you to alter,
fi x, consolidate, and remove fi le references from your solution before running it through the FileMaker Pro 8
conversion engine. Consult the documentation available with the product for more information.

File References in Converted solutions
Upon conversion, FileMaker Pro 8 converts the fi le references in a solution, naming them with the target
fi le name plus a serial number that increments based on how many references target a similarly named fi le.
File references that are known to not be in use are removed, however duplicates that are in use are not
consolidated. The results of this process are written to the conversion log fi le.

An examination of the conversion log will yield a number of fi le references that have been converted and
others that have been deleted. The fi rst mention of fi le references is a count of the number that may have
been converted. Later in the log you will fi nd references to specifi c fi le references that have been deleted.
These items will be listed as, “Deleting unneeded fi le reference: Filename.fp7.” Among this list one might fi nd
fi le references that appear to be for fi les that are not and purportedly have never been part of the solution. A
reasonable question might be, “where did these fi le references come from?”

During the life cycle of a solution, a fi le may reference many different fi les. Often times when creating a new
solution a developer will choose to “reuse” fi les from an existing solution to leverage work already performed.
FileMaker Pro 6 does not delete fi le references when they are no longer in use and, because they are hidden
from the developer’s view, this generally does not pose a problem. Other fi le references, which may still be in
use in some obscure and never visited script step, will also be present in the fi le although never accessed in the
day to day use of the system.

Upon conversion, FileMaker Pro 8 deletes fi le references that it considers to no longer be in use. This means a
script, relationship, value list, or other object is not accessing the fi le reference. If a fi le reference is still in use by
a script step it may still exist in the converted FileMaker Pro 8 fi le although unless it is one of the “Open File,”

page 51

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

“Close File,” or “Perform Script” steps those references will not be listed with the named fi le references and
will instead be stored with the relevant script step.

It is possible, if a fi le has been closed improperly or otherwise shows signs of corruption that FileMaker Pro 8
will inadvertently delete a fi le reference that is still in use or not delete a fi le reference that is no longer in use.
FileMaker Pro 8 does a very good job of converting databases, even those with some structural corruption. The
resultant FileMaker Pro 8 fi les should be corruption free however as with most issues of fi le corruption, the
conversion engine may not satisfactorily convert unhealthy fi les. In this situation it is likely best that the fi les be
rebuilt in FileMaker Pro 8 if a known good backup is otherwise unavailable.

File paths converted in FileMaker Pro 8 prefer the relative path over the full path (which is platform specifi c).
When FileMaker Pro 8 encounters a full path in an .fp5 fi le it converts the path using the syntax for the relative
path rather than the platform specifi c syntax for the full path. FileMaker Pro 8 adds relative paths to converted
fi les/fi le references. This is generally performed when the path to the fi le is stored as a network path but the fi le
is located in the same folder as other fi les being converted.

File conversion does not consolidate fi le references. Because a fi le can reference two different fi les with exactly
the same name, FileMaker Pro 8 has no way of knowing whether two fi le references that are both in use
actually refer to the same fi le. There is no harm in having duplicate fi le references upon conversion although for
clarity and performance it is better to edit and consolidate them beforehand.

On conversion, extensions are removed from fi le names in the fi le references, yet in newly created .fp7 fi les the
fi le references, by default, include the fi le extension.

Converted references search algorithm:

1) Reference will look for fi le without extension.
2) Reference will look for fi le with extension.
3) Reference will prompt for fi le.

Conversion and Runtime fi les
If .fp5 fi les converted to .fp7 are then bound to a Runtime application with a custom extension (e.g. “. USR”) the
binding engine does NOT add that extension to the fi le references which have no extensions on conversion.
Custom extensions are mitigated.

When fi le references in newly minted .fp7 fi les are created they, by default, contain the fi le extension. When
binding these fi les, FileMaker Pro 8 Advanced forces a change of the extension of the fi les from .fp7 to a user-
specifi ed value (e.g. “. USR”), removes the “. fp7” extension from the fi le reference paths, and does not add the
developer-specifi ed extension.

Why should I edit my fi le references?
You may fi nd, upon opening a converted solution in FileMaker Pro 8, that there are some performance
drawbacks, especially when working with related fi les and layouts. Much of this potential performance
degradation can be attributed to multiple fi le references and, in a network environment, using the wild-card (*)
network address to specify a hosted fi le.

page 52

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The fi rst time FileMaker Pro 8 requests a fi le, it needs to resolve the fi le reference to locate the fi le. For each
subsequent request for the fi le through that reference, as long as the fi le remains open, FileMaker Pro 8 will
not need to resolve the fi le reference again and will be able to access the fi le much faster. Optimizing your
fi le references therefore has a direct impact on solution performance. By consolidating your fi le references
you ensure that FileMaker Pro 8 will only need to resolve the reference once. However, there are further
performance implications to fi le references. In FileMaker Pro 6 it is common, when creating references to
network fi les, to allow FileMaker Pro to use the “local network” reference for the fi le (as indicated by the
asterisk). This method is quantifi ably slower than directly referencing the server IP address or DNS name and
adds time to the resolution phase. For unconsolidated fi le references, this creates a delay several times over.
Search order is also important. If you have multiple paths in your search order placing the full paths before
the relative and network paths may cause performance degradation for fi les which are deployed on FileMaker
Server 8 or otherwise are accessible via the relative path.

Given the nature of fi le references in FileMaker Pro 6 and FileMaker Pro 8 the developer must be concerned
about their state in both deployment and development scenarios. Where FileMaker Pro 8 improves on this is
that the developer now has explicit control over the search order used when locating fi les. Consolidating fi le
references makes the process of modifying these references easier. To avoid the problems of FileMaker Pro 8
not being able to locate fi les or locating the wrong copies of fi les it is preferable that the developer explicitly
specifi es where to locate the necessary fi les. This can be in the form of setting only the relative path (in cases
where the fi les will be deployed together in one folder or on one server) or an absolute path in cases where
the fi les will be deployed across multiple servers or where there may be both local and hosted fi les as part of
the solution.

The choice of fi le path to use is based on the likely development and deployment scenarios for the fi les.
Upon conversion you may fi nd that you want to modify your fi le paths for consistent operation and better
performance. There are a few guidelines for modifying fi le references that should help you choose the correct
path. For solutions where all of the fi les are located in the same folder or on the same server using only the
relative path will provide you with the most consistent, accurate behavior and the best performance. For
solutions that have some local fi les and some hosted fi les there will need to be more ‘nuanced’ references.
Where the hosted fi les reference each other those references should be relative paths. References from the
local fi les to the hosted fi les should contain the network address if possible, otherwise use the wild-card
network. References from the hosted fi les to the local fi les will need platform specifi c full paths. This latter
scenario is the most diffi cult to specify as there is no guarantee what the local path will be for the fi les. There is
no mechanism to specify a “dynamic” path programmatically. When specifying a full path it is preferable to use
the “fi lemac:” and “fi lewin:” syntax rather than the “fi le:” syntax to avoid performance degradation as FileMaker
Pro 8 attempts to resolve a path that is not valid for the current platform.

How can I consolidate my fi le references?
Because FileMaker Pro 8 now exposes the fi le references to the developer, it is possible to consolidate most of
the fi le references within a solution manually.

Depending on the size, complexity, and number of fi les in the solution this can be a daunting task. The
“Defi ne File References...” dialog does not indicate where a particular fi le reference is being used. Instead the

page 53

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

developer will need to create a Database Design Report of the solution and manually examine each area for
fi le references. This can be aided by renaming obsolete fi le references with a unique name (e.g. “DELETEME1”)
and searching the output of the DDR for occurrences of the fi le reference name. The developer will then
need to modify the sections of the solution that make reference to the obsolete fi le reference and re-point it
to the “correct” fi le reference. Note, however, that unnamed fi le references (e.g. Import Records) cannot be
consolidated with named fi le references.

One suggestion is to fi rst defi ne a “master” fi le reference and then have all the modifi ed/edited references point
to the new reference.

MetadataMagic, from New Millennium Communications, provides as part of its functionality, a utility called
File Reference Fixer. This tool exposes the existing fi le references in an .fp5 solution along with where the fi le
references are being used.

File Reference Fixer includes features to consolidate redundant fi le references, edit network addresses, and
set fi le references to relative-only, along with a single-click “Easy Mode” which enables consolidating all fi le
references and setting them to relative-only for use when all fi les in a solution reside in the same folder or on
the same server.

Consolidating fi le references before conversion takes a lot of the guesswork and busywork out of the process
of ensuring fi le references are correct throughout a solution. In addition, the documentation included with File
Reference Fixer explains some of the special scenarios regarding editing and consolidating fi le references that
are beyond the scope of this document.

page 54

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Conversion after a solution has been processed with File Reference Fixer will lead to a lot fewer problem areas
and, with most solutions, will obviate the need to manually re-specify fi le references after the fact entirely.

Moving forward

As you modify your converted solution it will become increasingly easier to maintain your fi le references in a
consistent manner. Named fi le references allow the developer full control over where and how to locate fi les
in a solution. They also make it more diffi cult for the developer to duplicate fi le references as the developer
makes the choice whether to reuse an existing fi le reference or create a new one. The fi le reference system
in FileMaker Pro 8 also makes it easier to deploy your solutions in various scenarios. Partitioning a database
across multiple servers is now accomplished by modifying one or two fi le references in each fi le and generally
does not require that they be modifi ed while deployed as is necessary in FileMaker Pro 6. This adds up to create
solutions that are more consistent, reliable, and are easier to document for the developer and end user.

About the author
CORN WALKER works at inRESONANCE, Inc., a FileMaker Solutions Alliance Partner based in Northampton,
Massachusetts. inRESONANCE is a strategy and technology consulting fi rm serving schools and non-profi t
organizations. iR provides customizable FileMaker Pro solutions, FileMaker Pro training, and web-design and
integration services to clients worldwide. Visit http://www.inresonance.com for more information.

page 55

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Scripting Issues Encountered When Migrating to FileMaker Pro 8

This paper explores some of the scripting issues involved with converting database solutions from FileMaker Pro
6 to FileMaker Pro 8. It discusses areas that will require particular attention from the developer to help ensure a
smooth migration, including the issues of “focus” and “context”, and the behavior of Startup Scripts and Closing
Scripts.

Focus and Context

For our purposes, context is defi ned as the starting point for any given operation. It includes the fi le, window,
layout and found set that are current at the moment when a script (or other operation) begins. Focus is a
similar concept, and refers to the currently active window/fi le/layout/found set, etc. Thus, as a script begins, it
will be affecting the current context, but the focus may well shift as the script progresses (say, if Go To Related
Record, Perform Script [External], or Select Window are called).

FileMaker Pro 8 introduces many new features that FileMaker developers have not encountered before, and
these changes will likely pose a learning challenge. In particular, FileMaker Pro 8 allows for multiple tables
per fi le, and for multiple windows to be displayed per fi le. These two basic concepts change the established
developer’s understanding of FileMaker Pro behavior with regard to focus/context and script behavior, because
FileMaker developers have never had to put much thought into the current context or focus in previous
versions of FileMaker Pro.

In previous versions of FileMaker Pro, the focus or context of a given operation was implicit in the design, since
FileMaker Pro has supported only one table per fi le and only one window per fi le. These facts, coupled with the
FileMaker Pro single-threaded architecture, ensured that the developer was always aware of the precise context
of where a script was functioning. A script would only operate on one window of a given fi le because that was
the only window that could exist. The script would also operate on the currently displayed layout within the
active window/fi le, on the current Found Set in that fi le. Thus, a developer always knew what the context was
based on the only window of a given fi le.

FileMaker Pro 8 offers a signifi cantly different development environment to the developer by allowing for
multiple tables per fi le, and for multiple windows to display for the same fi le. Scripts do not belong to a specifi c
table, but to the fi le as a whole. Thus, if a script in File A needs to operate upon several different tables within
File A, there is no need to perform external script calls to other fi les. The same script can operate on
several tables, since many tables may be contained within the same fi le. In addition, since a given fi le
can have Table Occurrences for tables that exist in external fi les, a single script can affect the data residing in
separate fi les without performing any external script calls. Developers may no longer think of a fi le as a table;
these are two very distinct concepts in FileMaker Pro 8.

FileMaker Pro 8 allows multiple windows to be open for the same fi le. A single script can change the focus
between several windows for the same fi le without calling any other scripts. Merely bringing another window
to the foreground does not imply a change in focus to another fi le or another table, unlike earlier versions

page 56

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

of FileMaker Pro. Thus, it does not imply a need to call another script. Furthermore, previous versions of
FileMaker Pro would perform an implicit Refresh Window when a scripted operation was completed (that
is, when the last script in a chain of scripts was fi nished running). This would always bring the last fi le in the
chain to the front. Scripts no longer perform an implicit Refresh Window when they complete in
FileMaker Pro 8.

Implications

As a consequence of these changes, the former behavior of several key script steps are not maintained in
FileMaker Pro 8. Script steps that would automatically change focus or context in previous versions of the
product no longer behave as they used to. For instance, in previous versions of FileMaker Pro, the Perform
Script [External] script step at the end of a script would make the external fi le active. In most cases, this would
bring the window of that external fi le to the front, effectively changing the focus to the new fi le. This behavior
is no longer supported.

Similarly, the Go to Related Record (GTRR) script step itself no longer necessarily changes window focus,
though it does change the context by changing the current layout and found set of records. In FileMaker Pro 8,
the related table may be in the same fi le as the current table and thus the layout and the displayed records can
change without a new window. In earlier versions, similar behavior was only possible in the special case of a
self-join relationship.

FileMaker Pro 8 has a new script step, Select Window, which can be used to explicitly activate a given window.
During conversion of an existing system, FileMaker Pro 8 will insert a Select Window script step after Perform
Script [External] or Go to Related Record steps under certain circumstances (see below) in an attempt to
approximate the behavior of previous versions. However, it may be necessary to modify or delete this added
script step in the converted fi le to obtain the desired behavior.

For more information, read the documentation in the “Converting FileMaker Databases from Previous Versions”
.pdf that is included with FileMaker Pro 8 and FileMaker Pro 8 Advanced.

Scripts that would explicitly open another fi le in FileMaker Pro 6 may behave differently in FileMaker Pro 8.
In previous versions, if a script included an Open File script step followed by more script steps, the other fi le
would open and then the window of the calling fi le would return to the front while the remainder of the script
ran. In FileMaker Pro 8, if a script opens another fi le and then continues, that other fi le’s window will remain
active while the calling script continues to run in the background fi le. It may be necessary to insert Select
Window [Current Window] script steps after each Open File script step in a converted solution to emulate
prior behavior. FileMaker Pro 8 will not automatically insert these Select Window script steps for you.

It should be noted that there is a big difference between the Open File script step and the New Window script
step. When a script performs a New Window step, by default that new window will display the same layout and
found set as the previously active window. The new window, therefore, displays the same table, and becomes
the active window. The script will continue to operate in this new window unless the developer explicitly
returns focus to the original window by using Select Window.

page 57

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The Open script step (which becomes the Open File script step after conversion) has changed behavior in
another signifi cant way. In previous versions of FileMaker Pro, you could create a script to open a remote fi le
by using either Open or Open Remote script steps. FileMaker Pro 8 can only open a remote fi le via Open
File if the fi le was specifi ed using the FMNET format (fmnet:/hostIP:FileName.fp7). Since this format was not
available in previous versions, it means that any script that opens a hosted fi le via the Open script step needs
to be modifi ed post-conversion. Either the fi le needs to be re-specifi ed using FMNET syntax, or else the Open
Remote script step needs to be used in place of Open File. It would probably be easiest to simply modify all
such scripts to substitute Open Remote for Open steps before converting the fi le, rather than trying to change
them after conversion.

As previously stated, developers will need to take a more proactive role in managing the context of their
solutions than they did in previous versions. Developers will fi nd themselves relying heavily upon the Select
Window script step. In previous versions of FileMaker Pro, developers could use the Open script step to bring
another window to the front, even if that fi le was already open. In FileMaker Pro 8, this is best accomplished
with the Select Window script step.

Script modifi cation during conversion

During conversion of existing databases, FileMaker Pro 8 will insert the Select Window script step after certain
specifi c script steps that used to change window focus in previous versions. One of those script steps is Go
To Related Record. If the GTRR step references an external fi le, and is not immediately followed by another
GTRR or a Perform Script (External) step, then FileMaker Pro 8 will insert a Select Window step. The Select
Window step will either select the current window (effectively returning focus to the calling script’s table) or
else will specify the external fi le’s window (if the related table resides in an external fi le).

Similarly, FileMaker Pro 8 will insert a Select Window step after certain Perform Script [External] steps.
FileMaker Pro 8 will insert a Select Window step, specifying the window name of the external fi le, if the Perform
Script [External] step is the last step in the script (not including End If, End Loop, or Comment) or if it is
followed by an Else step and the corresponding End If has no other steps after it. FileMaker Pro 8 will insert
a Select Window [Current Window] after a Perform Script [External] or a GTRR step if the step is not the
last step in the script (other than the steps above) and is not followed immediately by another Perform Script
[External] or GTRR step.

This can have many unforeseen consequences, and cause the focus to remain on the “wrong” fi le post-
conversion. For instance, consider the following scenarios:

Scenario 1: Cascading Scripts

Suppose you have three fi les: File A, File B, and File C. File A runs a script that has a single step, to perform an
external script in File B. The script in File B has a single step to run a script in File C, which switches to a layout in C.

page 58

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

In FileMaker Pro 6 and earlier, the scripts would end up with File C as the active fi le. But when these fi les are
converted to FileMaker Pro 8, the scripts will end up with File B in the foreground. Why?

During conversion, FileMaker Pro 8 will insert a Select Window [External File’s Window] step after each
Perform Script [External] step. Thus, after File A calls the script in File B, it runs a Select Window script that
brings File B’s window back to the foreground (after running File B’s script).

The developer can fi x this admittedly simple example rather easily, by deleting the Select Window steps.
However, with more complex scripts, it can be more diffi cult to determine where those steps are, and remove
them appropriately.

Scenario 2: Halting Scripts

Imagine you have 2 fi les: File A and File B. File A calls a script in File B, which ends with a Halt Script step. In
FileMaker Pro 6 and earlier, the scripts would end with File B active, because the Halt Script step implied a focus
change to the fi le that executed it. But Halt Script no longer forces a change of focus in FileMaker Pro 8. The
result is that focus will remain on File A after conversion. Note that FileMaker Pro 8 will add a Select Window
[File B] after the Perform Script [External] in File A’s script, but this will not change the focus from File A to File
B in this example. Since File B’s script runs a Halt Script step at the end, the Select Window in File A’s script
will never be performed. Unless File B’s script explicitly performs a Select Window [Current Window] to force
File B’s window to the front, then File B’s script will run entirely in the background, and focus will never leave File A.

Scenario 3: Hidden Windows

Suppose you have 2 fi les: File A and File B. The script in File A ends with a call to a script in File B, which
ends with a Toggle Window [Hide] step. In FileMaker Pro 6, this construction would end with File A in the
foreground, because when File B’s script is done, it will hide itself. But after conversion, this will result in File B
remaining in the foreground. Why?

During conversion, FileMaker Pro 8 will add a Select Window [External File’s Window] step after the Perform
Script [External] step. In our example, this Select Window step will bring File B back to the foreground after it
hides itself, effectively “unhiding” File B.

Miscellaneous Issues

The issue of context and focus in FileMaker Pro 8 will give rise to other basic issues with converted fi les. Here,
we will attempt to outline some of these issues and suggest possible approaches to solving them.

page 59

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Multiple Tables per File and Layouts

In FileMaker Pro 6, it was obvious which “table” a given layout was associated with, because there was only
one table per fi le, and a given layout was intimately tied to the fi le in which it was defi ned. Thus, there was no
ambiguity about which table was currently active.

This has changed in FileMaker Pro 8, as we have seen, because each fi le can have multiple tables. Since a given
fi le can have multiple layouts as well (as has always been the case), ambiguity arises regarding the context of
each layout in a given fi le. Which table occurrence does a given layout belong to?

In the Layout Setup dialog box in FileMaker Pro 8, you can specify which table occurrence the current layout
shows records from. Thus, each layout is intimately tied to a specifi c table occurrence in FileMaker Pro 8. This
is a fundamental part of the layout’s defi nition. But when you are working with the layout outside of the Layout
Setup dialog, there is no obvious indication of which table occurrence each layout is associated with. This
has an impact on how scripts function, because unless a script explicitly changes the context to another fi le,
window, or layout, that script will run in the current window, on the current layout (and thus affect the current
table and Found Set in that fi le).

This situation can be resolved by a combination of several techniques. First, it will be essential to develop a
good, consistent naming convention for layouts that clearly identifi es which table each layout is associated
with. It will also be important to incorporate explicit changes of context in each script, rather than relying on
FileMaker Pro 8 to change context for you. Even when the context does not need to change (that is, when the
script needs to run on the current table, with the current found set, on the current layout and in the current
window), it will be advisable to include Select Window [Current Window] steps, for consistency and reliability.

The issue of a layout naming convention becomes even more important when you understand that FileMaker
Pro 8 allows for duplicate layout names within the same fi le. Imagine a user’s confusion when they begin
working with a solution that has three separate layouts all named “Invoices” (and each associated with a
different table occurrence)!

Multiple Windows per File

In FileMaker Pro 6, it was obvious which fi le a window was displaying, because each fi le could have one and only
one window open. When you saw a window titled “Invoices.fp5”, you knew that it was displaying the Invoices fi le.

This has changed in FileMaker Pro 8. Now, a given fi le can have many different windows open, and the
developer controls each window name. Thus, there is now no obvious way to determine which fi le a given
window belongs to. When combined with the fact that a fi le can contain many tables, the potential for
confusion can seem overwhelming.

In the same way that a consistent naming convention can help with the issue of layouts in a fi le, a similar naming
convention can help when dealing with windows. By default, FileMaker Pro 8 will try to name each window

page 60

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

after the fi le that it is displaying. (Note that this has nothing to do with the table or layout being displayed!)
But the developer can rename any window via scripting, and likely should. In this way, the developer can avoid
the confusion that might otherwise arise.

The naming convention defi ned by the developer will, by necessity, have to be applied after conversion, since
there is no way in FileMaker Pro 6 to either generate new windows for existing fi les, nor to rename windows.

Opener Scripts

Like previous versions, FileMaker Pro 8 will allow you to specify a script to activate when the fi le is opened.
Such scripts are often referred to as Startup Scripts, but a better name would be Opener Scripts because the
behavior of the function has changed. In previous versions, an opener script would fi re when a fi le was fi rst
opened, except under certain specifi c circumstances (like if the fi le were opened by a relationship). This is still
generally the case in FileMaker Pro 8, but there are some circumstances where an opener script could fi re
unexpectedly.

For instance, if a fi le was opened in a hidden state due to a relationship or value list, and you open the fi rst
new window for that fi le, its opener script will fi re when the new window is drawn. This could not happen in
previous versions because each fi le could have only a single window. Note that this circumstance only occurs
when you are creating the fi rst new window for a fi le that was already opened via script or relationship.

You can avoid this by conditionally running your opener scripts based upon global data. At the start of each
opener script, check to see whether a global has been set, and abort the script if it already has. At the end of
the opener routine, set the global to prevent the opener script from running a second time. In addition to this,
do not rely upon FileMaker Pro 8 to implicitly open your fi les. Instead, have the opener script for your primary
fi le explicitly open each fi le in the solution, and set the global fl ags so that each fi le’s opener script will not fi re
after it’s opened. Many developers have already adopted this kind of approach, but in FileMaker Pro 8, it will
become even more important.

Closing Scripts

Similarly, the functionality of closing scripts has changed somewhat in FileMaker Pro 8. In previous versions, it
was obvious when a closing script was going to fi re: it happened when you closed the fi le. But FileMaker Pro 8
supports multiple windows per fi le. Furthermore, it is possible for a fi le to be open without any open windows at all!

The behavior of FileMaker Pro 8 works this way: when you close the last open window for a given fi le, that
fi le’s closing script will run. This will happen even if the fi le itself remains open (say, due to related fi elds being
displayed on a layout in another window). Yes, it’s possible to close all the windows for a fi le without closing
the fi le itself. The rules by which FileMaker “pulls open” fi les have changed, and it may not be able to close a fi le
once it has been referenced during a session by other fi les which are open, even with a Close File script step.
It is important to note that if you close the last open window for a given fi le (thus causing the closing script

page 61

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

to fi re), then reopen a new window for that fi le and close it again, the closing script will fi re again. The closing
script for a given fi le will execute each time that the last open window is closed for that fi le. Also, keep in mind
that when a closing script does fi re, it will be running from the context of the closing window. Thus, it will
operate on whatever found set and layout are currently active in that window.

The concept of opening or closing a window should not be confused with opening or closing a fi le, and also
should not be confused with the idea of accessing a table. These are all distinct concepts in FileMaker Pro 8.

About the author

Darren Terry is Director of FileMaker Development for Pacifi c Data Management Inc. He is a four-year veteran
of FileMaker Technical Support, and was formerly the Technical Liaison for Developer Relations at FileMaker,
Inc., where he worked closely with the FileMaker Solutions Alliance and was responsible for representing
the developer community in key team meetings. Darren has been a featured speaker at the annual FileMaker
Developer Conference, and has written articles for FileMaker Pro Advisor Magazine and ISO FileMaker
Magazine. Darren can be contacted at PDM at (408) 283-5900 or at darren@pdm-inc.com.

page 62

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Security and Access Privilege Issues

Part One: First Examination of Converted Files

When a developer, an IS/IT/DBA manager, or a user converts a FileMaker® Pro fi le from an earlier version
to FileMaker Pro 8, the security features contained in the earlier versions will also be converted. How these How these How
features convert and how they can be used post–conversion depend on a number of variables:

• Whether the security schema in the old fi les was well–formed;

• Whether the Groups feature was employed, and if so, whether it was employed as expected by the
conversion tool;

• Whether the Groups structure, specifi cally the function Status(CurrentGroups) was employed for any
type of conditional testing or access control; and,

• Whether the old fi les used the built–in FileMaker Pro security system or whether they employed some
other system such as a “log–on” fi le.

A password in an older version FileMaker Pro fi le will convert to an Account with the Account Name the
same as the old password and with the Account Password the same as the old password. This is a fundamental
conceptual point to remember. It has implications for on–going fi le security, including initial access to the
converted fi le.

Irrespective of any of these considerations, when initially opening a converted fi le that includes passwords, the
Open File dialog proposes as the Account Name the User Name Specifi ed in the FileMaker Pro 8 Application
Preferences1. This name in the Preferences most likely comes from the name supplied during the installation
process. It is most likely not the correct Account Name. So, as a fi rst step, if there is a value already supplied in
the Account Name dialog, it should be overwritten with the correct Account Name, the name that is the same
as the password.

Since that Account Name is shown in the clear when entered, potentially compromising the password,
FileMaker Pro 8 allows you to leave the Account Name blank, and then just enter the password. An early blank, and then just enter the password. An early blank,
fi rst post–conversion step may be to change the Account Name to something other than the password or,
alternatively, to change the password itself. Either will protect the confi dentiality of the information; one or the
other should be done. The following illustrates the log–on dialog box:

page 63

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

If you leave the Account Name blank and then enter what was the “master password” into the password
fi eld of this dialog box, the fi le should open with complete access. This will allow a developer to examine the
converted security schema and Access Privileges. Under the File Menu, select Defi ne‡Accounts & Privileges
to reveal a three-tab interface, one of which lists the Accounts and another of which lists the Privilege Sets in
the new fi le. The third tab is for Extended Privileges, a new feature (but one with some familiar options) in
FileMaker Pro 8. The tabs look something like this:

When exiting the Defi ne Accounts & Privileges area, you may be prompted for an Account Name and Account
Password. In that instance enter the password into both fi elds unless you changed the Account Name.
The Privilege Sets are where the rules are made that enforce the security schema of the fi les. FileMaker Pro 8
attempts as faithfully as possible to duplicate the security features from the old fi les. However the new version
does make some changes depending on those four conditions outlined above.

In order to understand what happened during conversion and in order to be able to deal with the
consequences of conversion, developers, IS/IT/DBA managers, and other users need to understand how security
works in the new version of FileMaker Pro 8. The security schema consists of three main parts: credentials,
authentication, and Privilege Sets. A user’s credentials are the Account Name and the Account Password. When
the user’s credentials are deemed authentic, the user is allowed access to the database with a set of privileges
defi ned by the Privilege Set attached to the Account. There is one and only one Privilege Set per account. This
fi gure illustrates the entire process:

page 64

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The conversion process attempts to map the privileges associated with the password in the old fi le to the
newly created Privilege Set in FileMaker Pro 8. In doing so it takes into account both the password defi ned
privileges and the Groups defi ned privileges from the older version fi le. It consolidates identical instances of
passwords and Group access privileges into a single Privilege Set with multiple accounts attached. This has
implications for any older version fi le that has passwords linked to Groups. It also has implications for what
was formerly called the “master password” in FileMaker Pro 6 and earlier versions.

In FileMaker Pro 8, the passwords are not stored in the fi le. Neither are they visible in the User Interface.
When entered they are obscured; they remain obscured. Additionally, there is an intentional mismatch between
the number of characters in the password and the number of characters seen in the obscured display in the
User Interface.

Important note: FileMaker Pro 8 passwords, unlike those in earlier versions, are not retrievable,
by FileMaker, Inc. or third-party tools. Do not forget your password, particularly the one attached
to [Full Access] accounts.

All “master passwords” are converted into Accounts with the Account Name and the Account Password the
same as the old “master password.” All, and that means all, such Accounts are then attached to the default [Full
Access] Privilege Set. A developer cannot create a [Full Access] Privilege Set; you must use the default one.
Neither can you delete or duplicate the [Full Access] Privilege Set. The default [Full Access] Privilege Set can
have some additions to it however through the Extended Privileges options. There are also two other default
subordinate Privilege Sets: [Data Entry Only] and [Read–Only Access]. We recommend that neither of these ever
be used; developers should create their own custom Privilege Sets for these functions. The default subordinate
Privilege Sets contain privileges that may be both inappropriate and surprising for their respective Privilege Set’s
name, such as granting export privileges to Read–Only users.

It is in the conversion of subordinate passwords from the old fi les to accounts attached to subordinate Privilege
Sets in the new ones that developers will engage in pre–conversion and post–conversion adjustment and
amelioration.

Part Two: Conversion Guidelines

There are several core scenarios for describing the security schema of an older version FileMaker Pro fi le:

No passwords
Master password only

page 65

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Master and subordinate passwords with No groups
Master and subordinate passwords with one or more Groups
Master and subordinate passwords with one or more Groups, and mal–formed schema2.

Examine your older version fi les to see where your solution fi ts in this broad division. It is possible that one
fi le in a multi–fi le solution will fall into a category and another fi le in the same solution will fall into a different
category. In that case, you may wish to consider improving that condition before converting, or you can
wait until after converting. Here are twelve specifi c, more detailed scenarios that describe a wide range of
possibilities, although not every possible one:

No passwords; No Groups

No passwords; One or more Groups {somewhat unlikely, but possible}

Master password only

Master password; subordinate passwords; auto–enter; No Groups

Master passwords; subordinate passwords; No Groups

Master passwords; subordinate passwords; Groups assigned

Master passwords; subordinate passwords; Groups unassigned

Master passwords; subordinate passwords; Master passwords have unique Group; others unassigned

Master passwords; subordinate passwords; Master passwords have unique Group; others assigned to Groups

Master passwords; Subordinate passwords; Groups assigned one or more passwords. Some Groups have
identical privileges and the passwords assigned to them have identical privileges.

Master passwords; Subordinate passwords; Groups assigned one or more passwords. Some Groups have
different privileges. Passwords assigned to a specifi c Group all have the same privileges.

Master passwords; Subordinate passwords; Groups assigned one or more passwords. Some Groups have
different privileges. Passwords assigned to a specifi c Group all have the same privileges. However the
security system is malformed.

Here is what to expect on conversion. We want to emphasize that close post–conversion checking of Privilege
Sets is required, because the possibility does exist for both conversion errors and unpredictable results.

FileMaker Pro 8 takes the FileMaker Pro 6 passwords and the FileMaker Pro 6 Groups, attempts to combine
their privileges, and creates a Privilege Set that represents the union of those privileges. The name of that
new FileMaker Pro 8 Privilege Set may or may not be consistent or identical to the name of the FileMaker Pro
6 Group. This has the potential, post–conversion, to disrupt the intended result of any calculation test based on that
specifi c Group Name.

page 66

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The privileges identifi ed by the new FileMaker Pro 8 Privilege Set come from both the FileMaker Pro 6
password and the FileMaker Pro 6 Group. FileMaker Pro 8 will attempt to map the access bits (or key
values) into a new Privilege Set and create a descriptive name. As stated, these access bits come both from
the Password itself and from the Group. From Passwords they are the various checkboxes, the popup list
for “Available menu commands”, and the three Record Level Access calculations. From Groups they are the
privileges associated with layouts and fi elds (Accessible, Not Accessible, or Read Only).

The following is a pseudo–code sequence for the process by which this conversion occurs (identifi ed by Ernest
Koe, inResonance):

For each password:
Figure out all the access bits for this password
Does this set of privileges already exist?
If Yes
 Use it
Else
 Create the set
 Name the set

Are there fp5 groups associated with this password?
 If Yes
 Name the set using all groups…(group1/group2/.../group[n])

Else
 Name the set “Privilege set [n]”
End if

End if

In a nutshell, FileMaker Pro 8 names the Privilege Set using the Group names associated with the password (if
applicable) and moves on. If it runs into a password that has the same set (but different group name), it will use
that set regardless of whether it was actually assigned to a different Group in the original FileMaker Pro 6 fi le.

When multiple passwords were assigned to a single Group and all those passwords had identical privileges, the
multiple Groups are consolidated in FileMaker Pro 8 to a single Privilege Set named for the fi rst Group of the
FileMaker Pro 6 fi le3.

Developers of FileMaker Pro 6 solutions frequently assigned passwords with dissimilar privileges to a single Group.
FileMaker Pro 8, on conversion, will create multiple Privilege Sets and assign Accounts to them based on the
FileMaker Pro 6 password names. Consider three passwords with dissimilar privileges: red, white, and blue. If the
FileMaker Pro 6 Group was named, for example, Users, then there will be instances in the fashion of Users, Users
2, Users 3, and so forth, for the Privilege Set names. If two passwords had identical privileges, they will both be
assigned to the same Privilege Set in keeping with the general FileMaker Pro 8 attempt to reduce fi le detritus.

page 67

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Developers of FileMaker Pro 6 solutions also frequently assigned passwords to multiple Groups.4 When the old
Groups had dissimilar privileges, the resultant FileMaker Pro 8 Privilege Sets will also have dissimilar privileges.
This could cause issues in the FileMaker Pro 6 environment; however in FileMaker Pro 8 most of these issues
have been rectifi ed.

For simplicity’s sake, assume only Groups have access bits5:
Group 1 - {-bcd-f}
Group 2 - {ab--e-}
Group 3 - {a-c-e-}

Assume also two passwords, foo and bar. Password foo is mapped to Group 1 and Group 2. Password bar
is mapped to Group 2 and Group 3. From foo’s point-of-view, the union of privileges are {abcdef}. From bar’s
point-of-view, the union of privileges are {abc-e-}. FileMaker Pro 8 then produces two accounts, foo and bar. Foo
is assigned a Privilege Set with the bits {abcdef} and bar is assigned to a Privilege Set with the bits{abc-e-f}. The
Privilege Set for foo is named “Group1/Group2” and the Privilege Set for bar is named “Group2/Group3”.

page 68

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Part Three: Implications Of These Changes

If there are Groups with identical privileges but different passwords with identical privileges in FileMaker
Pro 6, the conversion process, in keeping with the “anti–detritus” rule, will consolidate these into a single
new Privilege Set with all the accounts converted from FileMaker Pro 6 passwords attached to that single,
consolidated new Privilege Set. This can lead to some unexpected results in instances where Group
names were used in various conditional tests in FileMaker Pro 6, Status(CurrentGroups) becomes GET
(PRIVILEGESETNAME). First, and foremost, all “master passwords” from FileMaker Pro 6 are now accounts attached
to the [Full Access] Privilege Set. Second, multiple Group names may now have been consolidated into a single
Privilege Set. Thus, for example, a ScriptMaker script step syntax based on the “master password” that said:

[If (PatternCount, Status(CurrentGroups), “developer_only”))]

that evaluated to True in FileMaker Pro 6 will fail in FileMaker Pro 8 because it now reads [PatternCount
(GET(PRIVILEGESETNAME) ; “developer_only”)] and the Privilege Set name is [Full Access]. Similarly, in a situation
where passwords with identical privileges have been individually mapped to different, identical Groups, a test
that read, for example:

[If (PatternCount, Status(CurrentGroups), “SalesMgr”))]

that evaluated to True in FileMaker Pro 6 may now fail in FileMaker Pro 8 because the Group “SalesMgr” has
been consolidated along with such Groups as “MarketingMgr” and “OperationsMgr” into a single Privilege Set
named, for example, “MarketingMgr.”

Developers must check converted fi les to identify and to correct these potential anomalies. The following table
lists several places where such tests might be found, although not necessarily all such instances.

page 69

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Conditional Scripting [If…] Calculation fi eld formula

Record Level Access tests Auto–entered calculated values

Field validations by calculations Conditional value lists

Set Field and Insert Calculated Results ScriptMaker
script steps

AppleScript or VB Script generated wholly or
partially from calculated fi elds

Replace Function Show Custom Dialog function

Additionally, the [Status(CurrentUserName)] function used in earlier versions in scripts, calculations, and
Creator/Modifi er Name in Field Defi nitions options tab should be replaced for greater accuracy and security
with the new Account Name. This does not happen automatically during the conversion process. Note however
that if the Status(CurrentUserName) construct was used for certain Record Level Access (RLA) tests or in
other literal strings, developers will need to synchronize the User Name with the Account Name, either by
making the Account Names the exact same as the User Name, or by going through the Creator and Modifi er
fi elds and changing the prior User Name to the new Account Name. Note also that if the Account Name is
subsequently changed, that RLA will fail.

Pre–conversion correction can address some of these issues as well, especially those associated with any unique
Group that was assigned to an earlier version’s “master password.” Before conversion and by using a tool such
as New Millennium’s MetadataMagic or the FileMaker Pro 6 Developer Database Design Report, or possibly
the Analyzer tool from Waves in Motion, identify all instances in scripts and other locations where that unique
Group name was employed. You are searching specifi cally for literal text strings. In the Groups defi nition
area change the name of the “master password” only Group to Full Access. Then after having located instances
where the test based on that name is employed, change the literal string to read Full Access.

As a result, when converted, the newly corrected old syntax of [If (PatternCount, Status(CurrentGroups), “Full
Access”))] will be converted to [If [PatternCount (GET(PRIVILEGESETNAME) ; “Full Access”)]. The test will then
evaluate correctly, because the FileMaker Pro 8 Privilege Set name is Full Access. Incidentally, the brackets []
used in the FileMaker Pro 8 naming convention for this Privilege Set, viz. [Full Access] are not evaluated in the
conditional test. You can include them, or leave them out.

When FileMaker Pro 8 has created the new Privilege Sets in the converted fi les, developers will want to
carefully review the privilege bits set in each one. In most instances, developers will likely want to change the
privilege rules found in the old fi les to take advantage of the greater power and granularity found in FileMaker
Pro 8. This could entail simply removing all the converted Privilege Sets and starting over according to role-
based access rules.

Part Four: Mal–formed FileMaker Pro 6 Security Schema

I have referred in several instances to mal–formed schema when talking about earlier versions’ security systems.
There are several areas where developers may need to clean up their security schema before conversion.

page 70

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

FileMaker Pro passwords in earlier versions must be unique but are not case sensitive, and this results in mixed
cases of the same password being indiscriminate. For example “Master” and “master” and “MasTEr” and indiscriminate. For example “Master” and “master” and “MasTEr” and indiscriminate.
“MASTER” all are viewed as identical. FileMaker Pro 6 and earlier versions do not distinguish among these
options; all are viewed as identical. Thus each will open fi les designed to use the same passwords whether
directly or through “inheritance” of the password when the fi les are called by relationships, “open fi le”
ScriptMaker™ steps, value lists, etc.

If the password is “master”, then wherever it appears it should be precisely identical. Earlier versions of
FileMaker Pro forgave this behavior. However FileMaker Pro 8 Account Passwords are case sensitive.

The same issue applied to older version Group names, but here the situation becomes more complex. Groups
names were not required to be unique. Nor were they case sensitive.

Group name creation in previous versions of FileMaker Pro could have resulted in the creation of duplicate
or case insensitive Group names with unexpected and detrimental results in FileMaker Pro 8. If you expect
an action to occur based on the password’s being assigned to the Group “managers,” and there are duplicate
instances of that Group, then users may enjoy higher privileges than you anticipated or, conversely, they may
lack suffi cient privileges. Suppose that the fi rst instance of “managers” is associated with a password that has
delete records privilege; suppose further that the second instance of “managers” is associated with a password
that lacks that privilege. You see rather clearly what the potential for error is. Requiring that Group names be
unique within a given FileMaker Pro 6 fi le and be exactly identical among all fi les in a multi-fi le solution both
makes testing of conditions much easier.

Here are several specifi c pre–conversion correction steps for mal–formed security schema:

• Assure that all instances of a given password throughout a multi–fi le solution are exactly the same,
respecting case sensitivity;

• Assure that each Group name is also exactly the same, respecting case sensitivity, and that group names
are unique; and,

• Examine fi les for instances of passwords being assigned to multiple Groups in a given fi le, especially if such
Groups had dissimilar privileges.

As an aside, in FileMaker Pro 8, Account Names and Privilege Set Names are case insensitive and must be unique.
Account Passwords are case sensitive and do not have to be unique. See the information in the Tech Info Brief
on the FileMaker, Inc. website entitled Upgrading to FileMaker Pro 8: How to employ the new, advanced Security
system for a further discussion of these items.

About the author

Steven H. Blackwell is a Partner Member of the FileMaker Solutions Alliance and President and CEO of
Management Counseling Services [http://www.FMP-Power.com]. A two–time winner of the FileMaker
Excellence Award, he specializes in custom FileMaker Pro development, FileMaker Pro security consulting, and
FileMaker Server deployment.

page 71

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

With additional research and technical review by Barbara R. Levine of MicroServ, LLC, Ernest Koe and
Cornelius Walker or inResonance; Partner Members, FileMaker Solutions Alliance.

(Footnotes)
1 Scenarios developed by Barbara R. Levine.
2 See Part Four for more information on mal–formed schema characteristics.
3 Based on the internal ID of the Group.
4 Reference Tech Info Letter 102417.
5 Scenarios developed by Ernest Koe and Cornelius Walker.

page 72

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

“Record Ownership” in Converted Solutions: Opening and
Committing Records

Multiple users can create, edit and delete records in a FileMaker® Pro database all at the same time. To prevent
confl icts, the database environment must negotiate “record ownership” among its guests. We do not want two
database guests revising data in the same record at the same time, or one person deleting a record that another
person is editing.

In previous versions of FileMaker Pro, record ownership issues were handled in a very dependable and straightforward
way requiring no intervention by the developer, but not offering much control to the developer either. In FileMaker
Pro 8, there are some important differences in the actions and ScriptMaker™ commands that cause a record to be
locked and “released” (committed to the server). On the one hand, much more power over record ownership is now
in the hands of the developer. But, on the other hand, when you develop a new solution or convert a solution from
a previous version of FileMaker Pro, it is important to have a clear understanding of how “opening and committing
records” works. In particular with converted databases, it may be necessary to modify scripts and to rethink your
design in order to ensure optimal handling of record ownership.

“Open” and “Commit”?

What does it mean to “open a record” and “commit a record”?

Each record in a FileMaker Pro database has an internal unique ID number (as you may have seen if you ever
defi ned a “Status(CurrentRecordID)” calculation in previous versions). When certain manual or scripted
actions are performed on a guest computer, FileMaker Pro sends a message to the server to say, “This record
ID is now in use and is ‘owned’ by this guest.” The guest has now “opened” the record, and it is “locked” against
editing by others.
If another database guest attempts to edit the same record, a message like this will appear:

Figure 1: The “record is in use” alert.

When the fi rst person is fi nished editing and exits the record, the changes they have made are sent back —
“committed” — to the server, and the record once again becomes available for editing by other users.

page 73

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

If you have seen the above “record is in use” alert in previous versions of FileMaker Pro, your attention may
have been drawn to the new “Send Message” button. If a manual action, or scripted action with Error Capture
turned off, confl icts with another database guest who is already editing the record, you can now send a message
to that other guest’s screen that looks like this:

Figure 2: New feature — ask another user to release the record!

Opening a Record

When writing scripts, designing an interface, or even just using a database, a full understanding of exactly how
records are opened will help you make optimal design decisions.

What Actions Open a Record?

Various manual and scripted actions will cause a record to be opened, and thereby locked against editing
by others. The behaviors of some actions and certain ScriptMaker commands have changed signifi cantly in
FileMaker Pro 8. Here are some highlights of the changes:

A very basic difference, that applies across all possible manual and scripted actions that can be taken on a
record, is that clicking or tabbing into a fi eld (or scripting a “Go to fi eld” command) no longer opens a record.
In FileMaker Pro 8, only when the contents of a fi eld are edited (in other words, typing or deletion takes place)
is the record opened. On the one hand, this is benefi cial in that a user can no longer lock a record against
editing by others by merely entering a fi eld. On the other hand, scripts that ensured record-ownership in
earlier versions by means of using the “Go to fi eld” command will not work dependably in FileMaker Pro 8.
(See the “Changes You May Need to Make in Your Converted Database” section of this document, below, for
the suggested fi x).

Another change that will do away with record-locking problems seen in earlier versions is that a user will no
longer open a record by clicking into a global fi eld. Also, those of you who may have had to fi nd work-arounds
to contend with portal scroll-bars locking a record will be pleased to learn that this is no longer an issue.

page 74

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

In FileMaker Pro 8, the “New Record” command now not only leaves the record open (until a record-
committing action is taken), but the new record cannot be seen on other workstations until it is committed.

Since it was introduced in FileMaker Pro 3, the “Set Field” command only momentarily locked the target record
to make the edit, and then released (committed) the record again. In FileMaker Pro 8, however, the “Set Field”
command opens the record, and does not then automatically commit it. A record on which a Set Field command has
acted will remain open until it is committed by manual or scripted action.

See Tables 1, 2 and 3 for a detailed analysis of record-locking behaviors and comparison to earlier versions
of FileMaker Pro.

Who Can Open a Record?

As has always been the case, only database guests whose account privileges allow them to edit records can put
a lock on them. However, there is a new “Run script with full access privileges” checkbox option in the script
editor that, if checked, will temporarily enable a workstation to edit — and thereby place a temporary lock
on — records via ScriptMaker commands.

! Before you check the new “Run script with full access privileges” box in the script editor, think through the record-
locking ramifi cations. Does your record-ownership strategy depend upon certain users not being able to place a lock on a
record? If so, use this script option with care.

The ability to have open records in more than one window may cause “Self-Locking”

There is a signifi cant new record locking issue that could not exist in FileMaker 6, “self-locking.” A user can
now edit a record in one window and that record will remain open when the user switches windows (either
manually or via script). If an attempt is made to edit the same record from another window (either on a local
layout or via a relationship from another table), the user can be locked out of the record in that window. This
can occur during a script, with potentially serious consequences for data integrity given that edits may not
occur as anticipated.

“New Window” Menu Item

The new FileMaker Pro 8 “New Window” command makes it easy for a user to initiate a self-locking situation. If
a user has opened a record and then chooses the New Window command (or the “New Window” ScriptMaker
command is run), the record in the original window remains locked. This is the alert that the user will see when
this situation arises:

page 75

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Figure 3: The “self-locking” record alert.

! If a database guest’s available menus allow them to use the “New Window” command, or if you decide to add
this command to a script, keep the prospect of self-locking in mind. Self-locking can be caused without New Window as
well, and can even put the workstation into an “endless loop” situation if a script attempts to edit a self-locked record
anticipating that it would be available. Be sure to test carefully!

Self-Locking in Converted Scripts

In a converted solution, a script sequence that edited records in more than one fi le can now leave records
locked when it leaves a window (formerly a fi le). For example, a script can encounter a self-lock initiated by a
subscript called earlier in the same script. If Error Capture is on, it may be diffi cult to fi gure out what is happening.

The resolution to this sort of issue is to add a Commit Records script step before leaving a window. It may often
be advisable to add the Commit Records step after a Set Field step or at the end of a series of Set Field steps.

page 76

Upgrading to FileMaker 8:

Table 1: User Actions that Open a Record

(NOTE: When the information below notes that a record is “opened” this also means it is locked against editing by other users,
and also is locked against editing by the same user in another window.)
SEE Table 2 FOR SPECIAL NOTES REGARDING PORTALS.

ACTION EARLIER VERSIONS FileMaker Pro 8

Click or tab into a local fi eld Opens the record. Record is not opened.

Begin typing in a non-global
fi eld.

Record was already opened just by
clicking in it.

Opens the record.

Click or tab (FileMaker Pro 6)
or edit (FileMaker Pro 8) into a
related fi eld on the layout, when
the current (local) record had not
yet been opened.

Clicking or tabbing into the related fi eld
opens both the current record and the
related record.

Editing in a related fi eld opens both the
current record and the related record.

Click, tab or type in a global fi eld Opens the record. Record is not opened.

Select and Copy text Requires record ownership; just entering
the fi eld opens the record.

Selection of text does not open the
record; possible to Copy values from
a record that is open on another
computer.

“Replace/Relookup Field
Contents” Menu Commands

These actions momentarily open each
record as they move through the
found set. Each record is immediately
committed after it is edited, except for
the record that is current when the
action is complete: the cursor is left
blinking in the replaced/relooked-up fi eld
and that record remains open.

Behavior is the same, except that
the record that is current when the
action is complete is also immediately
committed. The cursor is left blinking
in the fi eld but the record is not locked
against editing by others.

“New Record” and “Duplicate
Record” Menu Commands

1. When the current layout has at least
one enterable fi eld in the Tab Order

2. When the current layout has no
enterable fi elds in the Tab Order

1. A new record is opened on the
workstation that created it, and it is
immediately visible upon a screen refresh
on other workstations.

2. The record is not opened; other users
can immediately begin to edit it.

In either of these two
situations:
A new record is created and a record
ID is obtained from the server, but it
remains open on the user’s workstation
until an action or command commits
the record (see Figure 4). Also, the
record cannot be seen (nor, of course,
edited) on other workstations.

Change records (using a
keyboard combination or the
“book”)“book”)

If the cursor was in a fi eld before
the record-change, the record that is
navigated to will be opened.navigated to will be opened.

The cursor will remain in a fi eld after
the record-change, but the new record
is not opened unless editing begins.is not opened unless editing begins.

page 77

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Table 2: Record-Opening Behaviors of the Portal

(NOTE: When the information below notes that a record is “opened” this also means it is locked against editing by other
users, and also is locked against editing by the same user in another window.)

ACTION EARLIER VERSIONS FileMaker Pro 8

Click on a portal scrollbar Opens the current record,
prevents others from using
the portal scrollbar, editing in
the portal, or using portal-row
buttons; also opens the fi rst
related record so that it cannot
be edited by anyone working in
the “child” fi le.

Neither the current record nor any child records
are opened; portal scrollbar, fi elds and portal-row
buttons remain accessible to others.

Click or tab into a portal-
row fi eld, or select the
portal-row background

Opens the current record,
prevents others from using
the portal scrollbar, editing in
the portal, or using portal-row
buttons; also opens the related
record whose fi eld has been
entered in the portal, so that
it cannot be edited by anyone
working in the “child” fi le.

Neither the current record nor any child records
are opened; portal scrollbar, fi elds and portal-row
buttons remain accessible to others.

Begin typing in a portal-
row fi eld

Record was already opened just
by clicking in it.

Opens the current record and the child record
whose fi eld is being edited. Does not lock the portal
scrollbar, but does prevent others from editing in any
portal row (although they can edit any non-opened
record “from the child side”).

Click a portal-row button
whose action goes to
the related record in a
different window

In earlier versions, moving a
window to the background
always commits the current
record in that window.

If the “parent” record was already opened before
the portal-row button was clicked, it will remain open
even after its window is moved to the background.

page 78

Upgrading to FileMaker 8:

Table 3: Scripted Commands that Open a Record

(NOTE: When the information below notes that a record is “opened” this also means it is locked against editing by other
users, and also is locked against editing by the same user in another window.)

As per the behaviors described in Table 1, if a related fi eld is entered (earlier versions) or edited (FileMaker Pro 8), both the
current record and the related record will also be opened, with the exception of the “Set Field” command (see below). All
the “Portal Behaviors” described in Table 2 also apply for scripted editing actions.

ACTION EARLIER VERSIONS FileMaker Pro 8

Navigation Commands
Go to fi eld, Go to next fi eld, Go to
previous fi eld; Go to portal row; or Go
to Record when used from a layout that
has at least one enterable fi eld in the
Tab Order.

All these commands will open the record. These commands no longer open a These commands no longer open a
record.

Editing Commands
All commands in the “Editing” category

All these commands require record
ownership and will open the record.

Behavior remains the same for
commands that truly edit fi eld
contents. But Copy, Set Selection
and Select All do not open
the record nor require record
ownership.

Field Commands

Set Field on a local fi eld

If a record was already open, Set Field
leaves it open, otherwise it momentarily
opens the record and then immediately
commits it again, by passing fi eld
validations.

Set Field opens the record and
leaves it openleaves it open. Any subsequent
action that commits the record will
trigger validations unless explicitly
bypassed with the option in the
Commit Records step.

Set Field on a related fi eld Opens (and commits, if records were not
previously opened) both the current and the
related record.

Will not open the current record
(if not previously opened); opens
related record (and leaves it open).

All “Insert” commands Insert commands open the record(s) Behavior remains the same
(includes new “Insert” commands).

Replace/Relookup Field Contents
(formerly in the “Records” category)

Scripted behaviors are the same as when
invoked manually. See notes for FileMaker
Pro 6 in Table 1.

Scripted behaviors are the same as
when invoked manually. See notes
for FileMaker Pro 8 in Table 1.

Records Commands

New Record/Request and
Duplicate Record/Request

Scripted behaviors are the same as when
invoked manually. See notes for FileMaker
Pro 6 in Table 1.

Scripted behaviors are the same as
when invoked manually. See notes
for FileMaker Pro 8 in Table 1.

Open Record/Request New command in FileMaker Pro 8. Opens the record (even if the user
is not editing a fi eld) until an action
or script command commits it.

Import RecordsImport Records If run with the “Replace” or “Update If run with the “Replace” or “Update
option checked, opens each record as it
moves through the found set, and then
immediately release it

Same behavior as earlier versions.Same behavior as earlier versions.

page 79

Upgrading to FileMaker 8:

When and How are Records Committed?

When a database is being accessed by multiple guests, we don’t want records being left open longer than
necessary, nor do we want a record to be committed to the server when subsequent actions depend on
persistent record ownership. Some of the rules for committing records have changed, and these changes both
offer some interesting new possibilities and present some potential pitfalls to keep in mind.

Perhaps the most dramatic change is that all records edited in a portal will remain open until the local (parent) record
is committed. Because of this new approach to opening and committing records in FileMaker Pro 8, if the local
record is reverted, all edited portal records will revert, too.

Particular attention should be paid in your converted solution to the fact that when a record in a background
window is opened by a scripted action, or if a user opens a record and then manually brings a different window
to the foreground, the record in the background will remain open until it is explicitly committed by manual or scripted
action. This applies only to windows that belong to an external fi le — in FileMaker Pro 8 you cannot run a script
in a hidden window if the displayed foreground window belongs to the same fi le. It is converted solutions that
will most be affected by this, since after conversion they will remain in the previous one-fi le-per-table structure.
Every “Set Field”, for example, that takes place in an external fi le will leave the record in that background fi le open.

See Table 4 (on the next page) for a detailed comparison of the record-committing behaviors of FileMaker
Pro 8 vis-à-vis earlier versions.

Two New Features Give You More Control

While this information does not pertain to converted solutions, once you start enhancing your database with
FileMaker Pro 8 two new features can offer increased fl exibility when it is time to commit or revert a record.
When you defi ne a fi eld as an auto-entered serial, you can now specify that the serial value will be generated
“On creation” (as in earlier versions), or “On commit”. If you choose the latter option, when a new record is
created the serialized fi eld will remain empty so long as the record remains open.

Figure 4: Control when a serial number is assigned.

At the moment the record is committed, the server then assigns to it the next available serial value. Thus, it is
now possible to delete an uncommitted new record without creating a gap in the serial numbers.

Another new feature solves an old dilemma: how to prevent changes to a record from being committed by
merely clicking on the layout background or navigating out of the record? In the past, in order to provide full

page 80page 80

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: page 81

“reverting” of changes to a record it was necessary to build an artifi cial “edit mode” involving separate layouts,
global fi elds, lots of scripting and tightly controlled navigation. The developer’s job (and the user interface) was
even more complicated if edits in portal rows might need to be reverted.

Now, simply by unchecking a new “Save changes automatically” option in the Layout Setup dialog, you can
provide a way to back out of changes. If edits are made to data when working in that layout, before the record
is committed a prompt offers the options to Save the changes, discard the changes (“Don’t Save”), or to Cancel
committing the record altogether.

Figure 5: A new opportunity to “back out” of edits made to a record.

Because any edited portal row now remains open until the parent record is committed (see Table 4 for more
detail), the “Save changes?” prompt makes it possible to completely revert the changes in the related records as
well as in the local record.

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Table 4:
User Actions and Scripted Commands that Commit a Record*

*or that will trigger the “Save changes to this record?” prompt if the record is edited from a layout whose “Save
changes automatically” box has been unchecked in the Layout Setup dialog

ACTION EARLIER VERSIONS FileMaker Pro 8

USER ACTIONS

Click on the layout background, click on
the “book” in the status area to change
records, use the layout menu to change
layouts, change modes, switch the “View
as” option, or run a script whose action
causes a change of records

Commits the record (and any
opened related record).

Commits the record (and any
related records that have been
opened -- see next row of this
chart).

Move cursor focus from one portal row
to another

Commits the portal-row record
that is exited and opens the
newly entered portal-row record.

All portal-row records that are
edited remain open until the parent
record is explicitly committed.

Minimize the window On Mac OS: the record remains
open until a record-committing
action is taken.

On Windows OS: commits the
record.

On Mac OS: Behavior unchanged,
the record remains open.

On Windows OS: The Minimize
Window menu command and
Adjust Window (Minimize) script
step will leave the record open; but
clicking on the window “widget”
to minimize the window will cause
the record to be committed, as will
using the menu in the upper left
corner of the window.

Hide the window Commits the record. Behavior remains the same: hiding
the window commits the record,
however a record can be locked by
a subscript in a hidden window!

Running a script in a background
window

If focus remains on the
foreground window when
script is complete, records
in background window are
committed.

If record-opening action is taken on
records in a background window
belonging to an external fi le, those
records remain open until explicitly
committed.

Switch to another window either by
script (Go to Related Record, Perform
Script(External), Open File) or by
clicking on a background window or
using the Window menu

Commits the record.

(Note that in FileMaker Pro 6,
in the interface, a window is
synonymous with a fi le)

The record remains open in the
window (fi le) that is now in the
background, until it is explicitly
committed.

page 82

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Close the window Commits the record. Behavior remains the same: the
record is committed.

SCRIPT COMMANDS — Commands that automate the above actions follow the same rules as noted
when the action is performed manually by the user. There is one important change:

Exit Record/Request Commits the record. Renamed “Commit Records/
Requests.” Commits any open
related records as well as
the current record. Includes
new option: “Skip data entry
validation”

Changes You May Need to Make in Your Converted Database

Do not rely on entering a “global fi eld” to lock a record
FileMaker Pro 8 does not put a lock on a record when a database guest clicks into or edits a global fi eld. So if
your solution depends in any way upon locking a record, for dependable performance after conversion be sure
you do not rely on entering or editing a global fi eld to gain record ownership. Modify your script so that it edits
a non-global fi eld, or simply uses the “Open Record” command, in order to put a lock on the record against
editing by others.

Use an “Insert” command rather than “Go to fi eld” to test for locked records and/or to
obtain record ownership
A commonly used technique for ensuring that a guest machine obtains ownership of a record, and to prevent
other guests from editing it, has been to use the “Go to fi eld” command. In previous versions of FileMaker Pro,
this command, if it succeeded without error, would open the record; or it would generate the error code 301,
“Record is in use,” if the record had already been opened on another computer.

The “Go to fi eld” command no longer opens the record in FileMaker Pro 8. In order to test for locked records
or to obtain ownership of unlocked records, you will need to revise any script that uses “Go to Field” for this
purpose. Modify the script to use an “Insert” or “Set Field” command instead. An advantage of using an Insert
command (such as Insert Calculated Result) is that it will achieve the record lock in both FileMaker Pro 6 and
FileMaker Pro 8, so the change can be made in a working solution in FileMaker Pro 6, prior to conversion.

You may need to add a “Commit Records” command after using “Set Field”
A record that has been edited by the Set Field command is no longer automatically committed. Examine your
scripts for all instances where the Set Field command takes action on a non-global fi eld, and consider whether
you might need to add a Commit Record command to make the change visible to other guests, or to simply
release the record lock.

page 83

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

If a script uses “Set Field” to edit a value in a related table, the related record will remain open until the parent
record is committed. If the related record happens to be in an external fi le (very likely to be the case in a
converted solution), calling an external “Commit Records” command in the related fi le will not commit its open
record. The “Commit Records” command (or action) must be run directly from the window from which edits
were made in order to commit all records that were opened.

You may need to add a “Commit Records” command before navigating to a different fi le
Remember that switching windows in FileMaker Pro 8 does not serve to commit an open record in the
window you are putting in the background. Examine all your scripted navigation with this in mind, and add the
Commit Records command anywhere you want to ensure a record is committed before a different window is
brought to the front.

Prevent the New Window menu item from being available to users
To prevent self-locking which could compromise scripted as well as manual data entry, it is advisable to disable
the “New Window” menu item. This can be accomplished either by setting the Available menu commands to
“Editing only” or “Minimal” for all Privilege Sets.

Use SecureFM to disable the New Window and the Show Window menu items
To protect against self-locking with a multi-fi le solution, you can selectively prevent user access to both
the New Window and the Show Window menu items using the SecureFM plug-in from New Millennium
Communications (www.nmci.com).

Test, Test Again, and Test Some More!
The information and suggestions in this article are based on a good deal of testing, but should be considered
“early research”. Whether you will be deploying a converted database or building fresh in FileMaker Pro 8,
test the database thoroughly. Only after much more testing by the community of FileMaker developers and
users, in a variety of environments and on a variety of database solutions, can we collectively evolve complete
information and a set of recommended “best practices.”

About the author
Ilyse Kazar, CEO of Datatude Ltd. in New York, is a leading FileMaker Pro database consultant and developer.
Since 1995, she has engineered and managed numerous successful custom development projects for clients in
a broad variety of industries. Ilyse has a special interest in the design issues involved in creating multi-user solutions.

page 84

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Migration and Web Publishing

The web publishing capabilities of FileMaker® 8 are among the most compelling features of the product. Instant
Web Publishing (IWP) has been greatly expanded, yet has retained its unparalleled ease of use. Custom Web
Publishing (CWP), which now consists exclusively of XML/XSLT, is tied directly to FileMaker Server 8 Advanced
(FMSA), thereby offering much greater stability and performance than were previously possible.

When migrating existing solutions to FileMaker Pro 8, there are special issues that must be considered if those
solutions are web-enabled. Those issues are largely dependent on the particular tool that was used to web-enable
the solution. Before converting any web-enabled solution, it is important for you to be familiar with both the new
web-publishing infrastructure and the specifi c programming changes made to both IWP and CWP. A thorough
discussion of either of these topics is well beyond the scope of this paper. Here, I will simply present an overview
of the new architecture and the conversion issues facing users of various tools.

Overview of the new web publishing architecture

If you are considering migrating existing web-enabled solutions to FileMaker 8, it is important that you
understand the benefi ts offered by the new web architecture. Virtually all of the web tools from previous
versions of FileMaker Pro have been rendered obsolete. In FileMaker Pro 8, there is no Web Companion, no
Web Security Database, no FileMaker Unlimited, and no Web Server Connector.

There are, however, still the same two basic methods of web-enabling FileMaker Pro data, IWP and CWP; both
tools have become much more sophisticated and powerful. One of the most signifi cant architectural changes
is that FileMaker Server 8 Advanced can act as the host for both IWP and CWP solutions. FileMaker Pro 8 can
itself still host IWP solutions as well (up to 10 fi les for up to 5 users), but server-based hosting will provide the
most power and stability.

Instant Web Publishing is a quick and easy way of extending your FileMaker Pro 8 solution to a set of remote
users. IWP renders your FileMaker Pro 8 layouts as web pages, and web-compatible scripts will function the
same as they do for FileMaker Pro 8 users. There are nonetheless some important differences between the
IWP experience and the FileMaker Pro 8 experience, including the following:

• There is no Preview mode in IWP. Functions that require Preview mode, such as sliding, columnar reports,
and subsummary reports, are therefore not possible via IWP.

• IWP has no tools for editing the database schema; you can only work with data through the tools
constructed in FileMaker Pro 8.

• On the web, there is a distinction between Edit mode and Browse mode that does not exist in FileMaker
Pro 8. Some FileMaker Pro 8 routines, such as fi ltered portals and auto-entering looked up values, do not
translate well to the web.

page 85

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

• In IWP, list views always contain a maximum of 25 records and table views always contain 50 records.
The IWP status area has next and previous controls for paging through data that do not have analogs in
FileMaker Pro 8.

• Only a subset of the available script steps is web compatible. You can see which ones are by checking the
“Indicate web compatibility” checkbox when viewing scripts; more than 70 scripts steps are web compatible.
Scripts that require user interaction (such as Show Custom Dialog) or that interact with the operating
system (such as printing, importing, and exporting) are generally not supported by IWP.

Despite these restrictions, IWP is ideally suited for extending a FileMaker Pro 8 solution to a set of known
remote users. There are some browser restrictions and connection limits, so it may not be appropriate for
most publicly accessible web sites.

The centerpiece of the new server-based web architecture is the FileMaker Server 8 Advanced Web Publishing
Engine (WPE). The WPE is confi gured to work with both a web server running either Apache on Mac OS X
or Microsoft’s Internet Information Server (IIS) and a copy of FileMaker Server 8 Advanced. It hands off web
requests to FileMaker Server 8, then conveys the results back to the web server. These three pieces (WPE,
FMSA, Apache/IIS) can be deployed in a one-, two-, or three-machine confi guration. Other pieces of the web
infrastructure include the Web Server Module, which is a plug-in for either Apache or IIS, and the FileMaker
Server Administration Console, a web-based application for enabling and confi guring WPE functions.

Some of the particular benefi ts of the new web publishing tools in FileMaker Pro 8 include the following:

• Unifi ed Security
Regardless of what method of web publishing you use, all security is controlled by the same accounts and
passwords that govern all other access to a fi le. You can grant users web access to a fi le by adding one
or more particular extended privileges to their privilege set. For IWP access, enable the fmiwp extended
privilege; for Custom Web Publishing, you need to create two new extended privileges, fmxml and fmxslt, and
attach these to one or more privilege sets.

 Whatever actions are permitted or denied by a user’s privilege set will apply to their web interactions. You
can prevent web clients from adding, modifying, viewing, or deleting records just the same as you would for
FileMaker Pro 8 clients.

• Session-based
When a web user connects to a database, they initiate a virtual session on the host. That session persists
until the web user logs out or until a timeout threshold has been exceeded. The virtual session “knows”
such thing as the values that a web user has assigned to global fi elds, what windows, found sets, and records
are available and active, and what record a web user is modifying. Web users will be notifi ed if a record has
been locked by another user (and therefore cannot be edited). Similarly, when a web user is modifying a
record, the virtual session ensures that other users on the network will not be able to edit that record until
the record has been committed. In sum, the fact that the new web architecture is session based makes for a
much more FileMaker Pro 8-like experience for users.

page 86

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

• Greater stability and performance
 One of the limitations of the previous generation of FileMaker Pro web tools was that all web traffi c fl owed

through the Web Companion, which is single-threaded application. This led to the possibility of performance
and stability issues. For instance, if one web user initiated a sort of a large set of records, other requests
from web users would be queued up and would not start until the sort was complete. Additionally, if any
action caused a modal dialog box to appear on the Web Companion machine, until the dialog box was
cleared, the Web Companion could not respond to queries. The new server-based hosting is much more
stable and powerful. In and of itself, this is a compelling reason to migrate existing solutions to FileMaker Pro 8
and FileMaker Server 8 Advanced.

Current IWP solutions

None of the Instant Web Publishing setup options from previous versions are retained during conversion to
FileMaker Pro 8. Indeed, this is because there is no need for them in the new version. The themes and views
that comprised the setup options in previous versions are now obsolete. The new IWP status area, previously
specifi ed as a theme, now resembles in both look and functionality the status area of FileMaker Pro 8. Its layout
pop-up menu allows users to navigate to any layout permitted by their privilege set, obviating the need for “views”.

Rebuilding your existing IWP capabilities following migration to FileMaker Pro 8 will take only a small effort.
You will fi rst need to confi gure the host (either FileMaker Pro 8 or FileMaker Server 8 Advanced) to allow
IWP access. Then, simply assign the fmiwp extended privilege to the privilege set of users for whom you want
to grant web access. If you want to restrict users to the layouts that you had previously designated for IWP
access, modify the privilege sets used for IWP to only allow access to those layouts.

Given the much enhanced script support of the new IWP, you will fi nd that most FileMaker Pro 8 functionality
translates well to the web; you will be able to accomplish much more with IWP than you ever could previously.

Current CDML solutions

As mentioned above, FileMaker Pro 8 does not support CDML solutions. If you have an existing CDML
solution that you want to migrate to FileMaker 8, you can use the CDML to XSLT conversion tool (which
comes with FileMaker Server 8 Advanced) to convert your format fi les into XSLT style sheets.

You should learn the basics of XML and XSLT before deploying a converted CDML solution. While the
conversion tool attempts to retain as much functionality as possible from your format fi les, you should
thoroughly test the converted fi les and be prepared to modify them if necessary.

Current third-party solutions

There are several other popular methods for web-enabling FileMaker Pro databases, such as Blue World’s Lasso
product line and PHP. Check Blue World’s website (www.blueworld.com) for information on using Lasso with
FileMaker Pro 8. For PHP solutions using the popular FX.php class, see the FX web site at www.iviking.org.

page 87

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

About the author

Bob Bowers, president of the Moyer Group, is the co-author of three books on FileMaker Pro, including Special
Edition Using FileMaker Pro 8. In addition, he’s a columnist and contributing editor for FileMaker Advisor
magazine, and is one of only a handful of trainers authorized to teach the FileMaker Professional Foundation
Training Series.

page 88

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Methodologies

Conversion Basics

Convert and Restore

This document discusses the process of converting a FileMaker® .fp3 or .fp5 solution and making the
modifi cations necessary to deploy it successfully as a FileMaker Pro 8 solution. This methodology will get you
up and running reliably in FileMaker Pro 8, without enhancements, and with a solution architecture which is
identical to your original solution. Read subsequent sections of this document for strategies for extending the
features of your solution, or redesigning your solution entirely, to take advantage of the new capabilities of
FileMaker Pro 8.

The alternative to following this process is to rewrite your solution entirely. There are at least three possible
motivations for taking the “Convert and Restore” path.

1. You may want to realize some of the immediate benefi ts of FileMaker Pro 8 without investing in the learning
time or the development time required to redesign your solution1.

2. You may be deploying a new FileMaker Pro 8 solution, or a part of an existing FileMaker Pro 8, yet there is
another part of your solution, or an associated set of fi les, which exist in FileMaker Pro 6 and which need to
be integrated with the new fi les. Since FileMaker .fp5 and .fp7 fi les cannot be directly related to each other,
it may be desirable to convert the associated fi les so you can integrate them with the new FileMaker Pro
8 solution. You may not have the time or desire to rewrite all of a solution, and therefore one part of the
solution will need to be upgraded using the Convert and Restore method.

3. Much has changed in FileMaker Pro 8 from previous versions. There is no better way to learn the nuances
of the changes than working to identify the instances of the changed behavior and learning how to integrate
the changed functionality. You will become intimately familiar with the new behavior and will master it, with
benefi ts to your expertise for future projects in FileMaker Pro 8.

There are different scenarios that affect the exact methodology you follow. You may be freezing all further
development in FileMaker Pro 6, and converting your solution to FileMaker Pro 8 in a short period of time.
Alternately, you may have a large solution that you plan to migrate, and you may want to begin preparing that
solution for future conversion while continuing to enhance it in FileMaker Pro 6. In the latter scenario, there
are a number of things that you may need to modify in your FileMaker Pro 6 solution to enable it to convert
effi ciently and successfully to FileMaker Pro 8, while continuing to work reliably in FileMaker Pro 6.

Regardless of your scenario (except for very simple solutions), it is wise to anticipate converting the solution
numerous times. It is most effi cient to do pre-conversion analysis, dry-run conversion, and post-conversion

page 89

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

testing. Then go back to the pre-converted solution, re-analyze, make more modifi cations, and reconvert. Repeat
this process until the effi ciency of pre-conversion tasks has been exhausted, and then do a fi nal conversion and
make necessary changes that can only be made in FileMaker 8.

Plan well, and follow the plan. Be methodical. Expect to change course or discover things during the process
that you did not anticipate. Do not begin to add features to your converted solution before fi nishing your
modifi cations to existing features, including testing and confi rming that they are working correctly. You do not
need to be trying to distinguish whether you are dealing with a conversion problem or a new bug that you have
introduced by your enhancements. Think like an engineer – isolate and solve one issue at a time.

The Most Common Issues

The issues that manifest most frequently as problems in converted solutions are in the following areas:

a. Conversion of access privileges
 i. Case sensitivity of passwords
 ii. Status(CurrentGroups) - changes to group names

b. Scripting and calculation changes
 i. Navigation scripts
 ii. On Open and On Close scripts
 iii. Several specifi c calculation result changes

c. Problems with fi le references
 i. Performance issues
 ii. Files can’t be found

d. Managing data integrity
 i. Changes in when and how records are locked and committed
 ii. Changes to New Record, Set Field, Validations

iii. Consequences of multiple windows – scripts can leave records locked in more than one window at a
time, so scripts can fail due to record locking even in a single user environment

 iv. Changes in fi eld indexing, especially word separators

e. Plug-in compatibility and interaction with third party products

See the in-depth documentation of these issues in other areas of this larger document, in the “FM7 Converting
Databases” .pdf document, and in the “Conversion Issues and Resolutions” appendix to this larger document.

Methodology Overview

The process will look like this (with the pre-conversion stage being considerably longer than the post-
conversion stage):

page 90

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Preparation
Getting educated
Getting experience
Required tools

Pre-conversion
Analysis

Pre-conversion modifi cations
Dry-run conversion
Testing
(Repeat)

Post-conversion
Post-conversion modifi cations
Testing
(Repeat)

Deploy (over the course of a few days, weeks, or months – as applicable)

Use Checklists!

There is a very helpful checklist that is part of the “FM 7 Converting Databases” .pdf that covers many
conversion issues. There is also a checklist of the issues that are included in the “Conversion Issues and
Resolutions” appendix of this larger document and available in database form in the MetadataMagic™
“Conversion Issues Report”. Create your own checklists as you become familiar with the issues and the tasks
required.

There are a few different classes of checklists that are required:

- Checklists of known conversion issues to make sure that all potential problems have been considered and
attended to if necessary.

- Checklists of processes in your solution which you intend to verify for accuracy and reliable behavior post-
conversion.

- Checklists derived from the metadata of your solution of all instances of a particular issue in your solution,
which you can use to methodically remedy the issue either pre-conversion or post-conversion.

Getting Educated

1. Read the “FM 7 Converting Databases” .pdf (included with FileMaker Pro 8 and FileMaker Pro 8 Advanced).
See if a more recent version of this document is available from the FileMaker web site.

page 91

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

2. Read the Tech Brief on Migrating Existing Solutions to FileMaker 8.

3. Read other Tech Briefs on Upgrading to FileMaker 8 –Security, Server, and Web Publishing.

4. Read this larger document – all of it!

5. Third party books and trainings – There are (or will be) many books and other white papers about FileMaker
Pro 8. There will also be excellent training programs available from several sources.

Getting Experience

6. Learn FileMaker Pro 8. Working on a converted solution is a very diffi cult way to learn the new application.
It is ideal to work on a new solution, even a moderately simple one, prior to converting an existing solution.
FileMaker Pro 8 is more different from prior versions of FileMaker Pro than it may fi rst appear to be.

7. Collaborate with others who are familiar with FileMaker Pro 8. Participate in online discussion lists. Ask
questions. Do not make too many assumptions.

Tools

8. The only required tool is FileMaker Pro 8. However, it is strongly recommended that you use FileMaker
Pro 8 Advanced so that you can use the Script Debugger to fi nd problems, as well as being able to use the
Database Design Report for analysis.

9. MetadataMagic™ – available from New Millennium Communications – includes File Reference Fixer, which
is an essential pre-conversion utility, as well as a “Conversion Issues Report” which will help to identify
potential problems in your solution.

10. Conversion Log Analysis Tool™ – available from New Millennium Communications – this utility will import
the Conversion.log fi le that is created when FileMaker Pro 8 converts a solution, and will enable you to
effi ciently analyze it to identify problems.

11. FMrobot™ – available from New Millennium Communications – this application will allow you to automate
the creation of tables and fi elds in a FileMaker Pro 8 fi le, based on fi eld defi nitions in an existing FileMaker
Pro .fp5 or FileMaker Pro .fp7 fi le.

12. Please visit the FileMaker web site (www.fi lemaker.com) periodically for information about new third-
party tools that may be released to assist you in your conversion from previous versions of FileMaker Pro
to FileMaker Pro 8.

* Please Note: FileMaker Pro 8 and FileMaker Pro 8 Advanced now provide the ability to import tables. FileMaker Pro 8 Advanced
also includes the ability to copy/paste scripts, fi elds, and tables.

page 92

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Preparing for Iterative Conversion Testing (in your FileMaker Pro 6 solution)

13. If you have not already, create a script in each fi le, and a central calling script which will create clones of all
of your fi les so you can test without having to convert data. You may need to add at least one record to
each fi le to make sure that it works correctly. This can also be done via a script in each fi le that is called
from a central fi le. If you have any fi les that contain required data (reference tables), then make copies
rather than clones of those fi les.

14. Put branches (If, Else), based on “Status(CurrentAppVersion)”, into all appropriate scripts of a solution.
The branches for FileMaker Pro 8 may bypass certain steps in a script, or simply call an “Exit Script” step,
or they may call a subscript that will perform certain script steps only in FileMaker Pro 8. The If statement
calc to use is: “TextToNum(Status(CurrentAppVersion)) < 7” (or <8).

15. Put placeholder subscripts into all appropriate locations in a solution. These placeholders will later contain
steps that can only be added in FileMaker Pro 8 (because they do not exist in FileMaker Pro 6). By using
a placeholder subscript, it will be possible to add the step or steps quickly after conversion and they will
be immediately functional in all desired locations. In some instances you can put steps into scripts which
are innocuous in FileMaker Pro 6 fi les but which will enable a script to convert and behave perfectly in
FileMaker Pro 8.

16. On Open and On Close scripts have changed their behavior subtly but with potentially signifi cant
consequences. Without remediation you can even be prevented from opening your converted solution
at all, and you can get stuck in endless loops when closing fi les. Put a branch into your On Open and On
Close scripts so they can be turned on or off by referencing a developer toggle (a fl ag fi eld which you can
set to make the action conditional). The developer toggle can be a global fi eld in a central fi le, referenced
through a constant relationship or a non-matching relationship. Before conversion, put a conditional step
at the top of these scripts so that they can be exited without executing the remaining steps. You may want
to make the conditional test branch on the version of FileMaker Pro that you are running. Alternately,
you may want to turn off these scripts altogether in Document Preferences (in FileMaker Pro 6) or File
Options (in FileMaker Pro 8). Read the section of the larger document on “Scripting Issues” for more
information with the issue.

17. Any dependencies on plug-ins may need to be disabled until those plug-ins are available for FileMaker Pro 8.

18. Turn every instance of Set Error Capture [On] into a sub-script so that you can control it with a
developer toggle. This enables you to see certain errors as they occur in your scripts because they will not
be suppressed.

19. Add a “Commit Records” script, with one script step (Exit Record), to every fi le. After conversion, check
the checkbox “skip data entry validations”. You may need to call this script after New Record steps or Set
Field steps in your solution to restore legacy behavior. You may also want to put this script into the Scripts
menu, so that if you get hung up when a script is executing you can get past it. This recommendation
addresses issues associated with the changes to records locking and record commitment. These changes
have far-reaching consequences.

page 93

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

20. While you are at it, you may want to add a “Halt Script” script (with just one step) and put it in the menu
of every fi le. Again, you can make this feature conditional on a developer fl ag.

21. After conversion, the behavior of navigation between fi les can change, depending on the exact script step
sequence. By adding steps in advance of conversion after certain instances of Perform Script [External] or
Go to Related Record, it is possible to cause the script behavior to convert reliably.

22. Standardize your passwords so that a given password in all fi les is the same case (lowercase, uppercase,
mixed case). You can do this manually or with the “Password Standardizer” feature of Password
Administrator. This will prevent passwords from failing to open fi les when they would have in FileMaker
Pro 6. See the section of this larger document on conversion of Access Privileges for more information.

Analysis – Using MetadataMagic

23. Run MetadataMagic (available from New Millennium Communications) on your solution. If there are any
processing errors, see which items are causing the problem. They may represent some corruption that
could cause a problem in the conversion to FileMaker Pro 8. Fix the problem, usually by replacing the
object, and then re-process your solution until it processes cleanly.

24. Fix fi le references before conversion by using the “File Reference Fixer” feature of MetadataMagic. It can
be a quick automated pre-conversion process and a very laborious manual process if performed after
conversion – with signifi cant consequences for solution performance, reliability, extensibility, and ease
of ongoing development. Make sure you include all fi les that are part of the solution (or which are ever
referenced by the solution) in the folder when processing. If your solution is always run with all fi les in the
same folder or on the same server, then you can use the Auto-Fix feature. If you sometimes reference fi les
that are in a different folder or on a different server, then carefully read the instructions regarding “Special
Situations” in the File Reference Fixer documentation. Among other consequences, problems associated
with fi le references include very slow opening of converted solutions, or the potential of the application
“not responding” during opening of fi les.

25. Use this opportunity to clean up obsolete scripts, fi elds, and layouts in your solution. You can use the
“unreferenced items” fl ags in MetadataMagic to fi nd all such items. It is also a good time to fi x any errors.
There is a dedicated “Errors” report fi le in MetadataMagic.

Iterative Conversion

26. In rare cases, you may have some failures in the conversion. That is, FileMaker Pro 8 may not be able to
successfully convert a fi le. Sometimes this is caused by corrupt layout objects, which you may be able to
fi nd with MetadataMagic. Otherwise they can be found by a process of elimination, by deleting layouts
selectively and reconverting. Another known cause of fi les occasionally failing to convert successfully is
that there may be illegal characters in fi eld names or relationship names. Sometimes these characters

page 94

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

are visible on one platform and not on another (Macintosh/Windows). Try clearing the old name, and re-
creating it. If necessary delete the object and replace it. Sometimes a layout object cannot be accessed
without causing a crash, which effectively prevents the object from being deleted. In this scenario, try
accessing it on a different platform. If that does not work, the only alternative is to delete the entire layout
and recreate it (and reconnect all references to it). To delete a layout with this problem, go to an adjacent
layout in layout mode, scroll way down so that the layout contents are out of sight, then switch to the
layout that has the corruption problem and delete it. By not displaying the problem element, the
crash is prevented.

27. Analyze the Conversion Log, using the New Millennium “Conversion Log Analysis Tool”. You can scan it
visually, but it is very long and fi lled with non-essential information, so it is easy to miss the few important
bits of information. Look especially for items identifi ed as “damaged”, “errors”, or “invalid”. Try to alter
or re-create these items in FileMaker Pro 6, and then re-convert. In rare cases, FileMaker Pro 8 may not
be able to identify the name of a damaged item, so that the log will simply say that an “unknown” item
was not converted. For instance, a damaged fi eld may not be brought over. In this case you will need to
carefully compare the names of the fi elds from the pre-converted fi le with the post-converted fi le.

28. Review the “FM7 Converting Databases” .pdf document and identify the conversion issues that are
relevant to your solution. It is also essential to become familiar with the appendix of this document,
entitled “Conversion Issues and Resolutions”.

29. The “Conversion Issues Report” in MetadataMagic may be helpful for fi nding all instances of a specifi c
problem in your fi les.

30. Fix all instances of issues that are most effi ciently fi xed pre-conversion, and then convert and test. Repeat
as necessary. The “Conversion Issues and Resolutions” items include a distinction of which items are most
effi ciently fi xed pre-conversion.

31. Fix data that will be affected by conversion. There are changes to how certain characters are evaluated in
certain fi eld types (for instance with date and time separators, and with text in number fi elds). There are
also signifi cant changes to indexing – including to values that are used in keys, or from which keys could
be derived. For instance, dashes have changed behavior as a word separator. This could have signifi cant
consequences for data integrity.

32. Evaluate your layouts after conversion. You may want to do some cosmetic tweaking between conversion
attempts -- replace fonts, replace/resize images, change hairlines to 1 pixel, etc. If there is an issue with
certain fonts or graphics or other layout items, isolate the optimal way to prep layout elements for
conversion by using a dedicated fi le with no scripts or fi elds, so that you can test iterative conversion
effi ciently. Some graphics may render differently depending on the platform on which the fi les are
converted. If you are having a problem, try converting on the other platform. Save the converted fi les from
both platforms. You may later come across a layout element that you want from “the other” converted set.

33. It is important, after conversion, to test script behavior and calculation results for reliability and
consistency with prior behavior. Note, however, that comprehensive testing is very diffi cult. You may not

page 95

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

think to test features in a certain sequence that could cause a problematic result. The only substantive
remedy is to have a good familiarity with the possible issues so that you know what to test, and/or know
what to fi x in the fi rst place.

See the Conversion Issues documentation in this larger document for the specifi c
issues and for advice on which ones are best addressed pre-conversion and which
post-conversion.

34. Include users in the testing process. Include the people who are most familiar with the use of the system
in testing and evaluating that the features are working reliably. They will inevitably catch things that a
developer will miss.

Post-Conversion Tasks – After the Final Iterative Conversion Testing

35. Change account names. FileMaker Pro 6 passwords become both the account name and the password
in FileMaker Pro 8. Furthermore, consider changing your security structure more extensively post-
conversion. The access privilege architecture is very different, and much more powerful, in FileMaker Pro
8. In FileMaker Pro 6 solutions, it was commonplace for multiple users to share passwords. Due to the
enhanced access privilege management features of FileMaker Pro 8, it is practical for each user to have
their own account, and it is strongly recommended that developers implement their security structure
accordingly.

36. Populate the placeholder scripts, described above, implementing any features which can only be added in
FileMaker Pro 8. For example, check the checkbox in the Commit Records script step, “Skip Data Entry
Validations”. It is possible that you will have already done this in each round of iterative conversion
and testing.

37. Organize the relationships graph. After conversion, all relationships in FileMaker Pro 6 become table
occurrences on the relationships graph in FileMaker Pro 8. They are arranged neatly, grouped by common
primary keys. However, they are arranged in two columns, potentially very long columns if there are many
relationships. It is hard to fi nd particular relationships and manage them without organizing them better.
Consider using the tools at your disposal to manage the relationships graph – the primary tools being
space, color, and naming conventions.

Importing Data

38. It is likely that in any complex solution it will be most effi cient to practice conversion on cloned fi les.
Therefore, it will be necessary to import data post-conversion. The export/import process works similarly
to the way it did in previous versions, with just a couple of exceptions. Read the documentation on
conversion issues associated with import and export for more information in both the “FM 7 Converting
Databases” .pdf and in the “Conversion Issues and Resolutions” appendix to this larger document. Notably,

page 96

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

importing from closed fi les will now import all records from a given table, so, if you want to import just a
found set, the source fi le must be open.

39. There are multiple approaches to consider for transferring data from previous fi les to new fi les. For some
scenarios it will be appropriate to use an interim fi le as part of the process. You can export your data to a
tab-delimited text fi le, a merge fi le (.mer format) which allows you to import using “matching names”, an
XML fi le which you will be able to transform with an XSLT to change fi eld names or restructure the data,
or you can export in FileMaker Pro format which has the benefi t of preserving container fi eld contents.
There is no need to export calculation or summary fi elds (unless you intend to import those values into
non-calculation fi elds).

40. For certain situations, especially commercial solutions for which the conversion is intended to be
automated, it may be useful to pull the data rather than push it. You can create an interim FileMaker Pro
.FP5 fi le that is designed to import the data from the previous version fi les, and then that is the fi le to
convert. Among the benefi ts of this approach is that the interim fi les have no “on open” scripts to deal
with (in fact, no scripts at all), no fi le references, nor any indexes, so the process can be much faster and
simpler.

Managing Your Initial Deployment Environment

41. Try to replicate the previous FileMaker Pro environment as much as possible. Use either “Editing Only”
menus, or SecureFM (from New Millennium Communications), to disable the New Window menu item.
Use SecureFM to disable the Show Window menu item.

42. DO NOT add new layouts to your converted fi le that use any of the external table occurrences generated
by the conversion. Your scripts were written without the need to manage their context. For instance, if
you add a layout to your “Invoices” fi le, using the table occurrence that was created for your relationship
to “Contacts”, and then run your “New Record” script, it will create a new contact, not a new invoice.
Similarly, but more seriously, delete record will delete records from the table of the current layout.

43. Hardware and OS issues – FileMaker Server 8 requires a much more substantial machine than did
FileMaker Server 5.5 and earlier. FileMaker Server 8 is supported only on Windows 2000 Server, Windows
2003 Server, and Macintosh OS X Server. The OS requirements of FileMaker Pro 8 have changed.

44. As with any technology deployment, it is important to isolate components of the system and to make sure
that they are working reliably before aggregating them.

page 97

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

About the author

Danny Mack is the President of New Millennium Communications, Inc., a FileMaker Solutions Alliance Partner
based in Boulder, Colorado. New Millennium specializes in FileMaker Pro consulting and solution development,
and is the publisher of numerous plug-ins and tools that facilitate the work of FileMaker Pro developers,
available at http://www.newmilennium.com.

(Footnote)
1 These instant benefi ts include: no fi le size limit (for all practical purposes); no fi le count limit; container
fi elds that can store any type of fi le, text fi elds that can hold up to 2 GB of data; calculations don’t lose text
formatting; WAN performance improvement; Serverformatting; WAN performance improvement; Server-formatting; WAN performance improvement; Server-formatting; WAN performance improvement; Server based encryption of network traffi c; Unicode support
in text fi elds; robust, nearly incorruptible, fi le format; greater security of the fi le format; precise math; sticky
portals; and many new features for going forward – including the new relational model; access privileges; Instant
Web Publishing; and an extraordinary number of large and small effi ciency improvements.

page 98

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Adding a New Interface File To An Existing Solution, Later Consolidating
Tables

FileMaker Pro users who want to begin leveraging the powerful new features of FileMaker Pro 8 but have a
signifi cant investment in a FileMaker Pro 6 solution may face a diffi cult dilemma, especially if the FileMaker Pro 6
solution is in use every day providing value for their organization.

They may be tempted to rewrite the solution from scratch. Although this may be the appropriate solution for
some scenarios, it does have some signifi cant drawbacks. Among other problems, the time and resources required
may be signifi cant.

Alternatively, they may decide that they need to get some return on investment (ROI) as early as possible and
therefore it makes sense to convert and restore the solution to its original FileMaker Pro 6 behavior. The problem
with this approach is that at the end you have a solution that is FileMaker Pro 8 compatible but not FileMaker Pro 8
optimized. This may make it diffi cult to extend the solution in the future.

What is needed is the ability to bring a solution from the “converted and restored” stage (i.e., FileMaker Pro 8
compatible) to a fully optimized for FileMaker Pro 8 stage that is better suited for continuing development and
extension. This would allow both a quick return on investment and the ability to continue to use the system as a
reliable base for future development. Fortunately the new fl exible application model of FileMaker Pro 8 makes it
possible to do just that.

This section of the document discusses a methodology that developers can use to move their “converted and
restored” FileMaker Pro 8 solutions along a path of multiple stable points to a stage that is suitable for ongoing
development, i.e., FileMaker Pro 8 optimized. Important features are pointed out and a step-by-step guide for the
methodology is outlined.

Why rewriting doesn’t always makes sense

The decision to rewrite should not be made lightly. Costs and benefi ts have to be weighed very carefully. The
benefi ts of moving to FileMaker Pro 8 are quite clear but the cost of rewriting may not be. Among the costs
that need to be considered are: time and resources required to rebuild, effect on current operations, potential
for serious design fl aws due to lack of experience, and length of time to begin to realize a return on the
investment.

End users will be left using the current solution until the new one is ready to go into production. Depending
on the complexity of the solution this could take many months. During this period, development efforts will
have to be split between building the new solution and maintaining the existing one.

Converting the solution to FileMaker Pro 8 and restoring the original functionality may be the fastest way to get
some ROI. There are some signifi cant benefi ts to be realized from simply running in FileMaker Pro 8. (See the
tech brief on “Upgrading to FileMaker 8: Migrating Existing Solutions” for more specifi cs.)“Upgrading to FileMaker 8: Migrating Existing Solutions” for more specifi cs.)“Upgrading to FileMaker 8: Migrating Existing Solutions”

page 99

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Why Convert and Restore isn’t good enough

The Convert and Restore option does have some drawbacks, however. Although the solution is now FileMaker
Pro 8 compatible, it can hardly be said to be using an optimal design for FileMaker Pro 8. It has more fi les than
necessary and is probably full of techniques that are now obsolete in FileMaker Pro 8. Although this may not
affect the usability of the system, it probably does affect the maintenance and extension of the system.

The great strength of FileMaker Pro is its fl exibility. Developers can quickly add new features and make changes
to live systems almost at will. Even if they are not working in the live fi les, there are few applications, if any, that
can match FileMaker Pro as a Rapid Application Development (RAD) tool. A converted and restored solution
may compromise some of these benefi ts, if it is left in a subtly fragile state. The solution will work, but unless
the developer is careful it may be diffi cult to extend.

One of the most important things to understand about the state of a converted and restored solution is that it
was designed for an environment that was constrained to one table and one window per fi le. Removing those
constraints may cause problems with “context”. A reasonable approach might be to add those constraints back
to the system.

The “New Window” feature can cause issues for scripts that were not designed to handle multiple windows
with their different found sets and potentially multiple locked records. In order to ensure that a solution works
as it did in FileMaker Pro 6, the “New Window” menu item should be disabled. This can be done either with
the FileMaker Pro 8 access privileges by defi ning all privilege sets’ menus as “Editing Only” or “Minimal”.

Converted and restored solutions do not have problems associated with having many tables per fi le because
they only have one table in every fi le. The constraint of one fi le per table is still in place as long as the developer
does not add new layouts based on other tables.

When you add another table to the fi le, table context is no longer guaranteed, and script logic can fail. In
fact, it is a bit subtler than it at fi rst appears. Files will already have “Table Occurrences” from other fi les in
them. When a .fp3 or .fp5 fi le is converted to FileMaker Pro 8 format, all relationships are converted to table
occurrences in the new fi le. The developer may be tempted to create interfaces and logic based on those
foreign table occurrences. This seemingly innocuous action can also break table context, since there is now
script logic and interfaces in place that may shift table context away from the main table in the fi le.

Consider something as simple as this: In a converted Invoices fi le there is the Invoices Table Occurrence (TO).
This is the only TO in the fi le that is not from a foreign fi le. All of the others come from other fi les. The other
TOs are there to show relationships to other fi les. Therefore an Invoice Items TO will be there to describe the
relationship between the Invoices and Invoice Items.

It might seem relatively harmless to create a new layout in the Invoices fi le based on the Invoice Items TO and
use Go to Related Record to display a list view of Invoice Items related to the invoice. But unless you are
careful, you run the risk of leaving the fi le with the table context set to Invoice Items. This will happen simply

page 100

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

if the user leaves that window open on the Invoice Items layout. This may cause problems the next time a user
runs the “New Invoice” script and it creates a new record in the Invoice Items table instead of the Invoices
table. This is more likely to be a problem if scripts that manipulate records or edit data are initiated from
another fi le.

Although convert and restore has the potential to provide some early return on investment (ROI) and
experience in using the new application there may be diffi culties involved with extending or optimizing it.
Luckily this is not the case. The new application model makes it possible to begin to immediately extend your
solution without breaking logic that the organization is relying on every day to do it’s business.

Extend: Add a New Interface File

One of the most important changes to the FileMaker Pro 8 model is the ability to access data from a different
fi le as though it were in the same fi le. Scripts and Layouts can be designed in one fi le but get their data from
tables in another fi le. This very fl exible feature is what makes it possible to begin to extend a converted and
restored solution immediately.

As was pointed out above, it is diffi cult to add features to an existing fi le without potentially affecting the code
that was already there from pre-conversion. So don’t! Leave the old fi les functioning as they are. Instead create
a new empty fi le and access the data in the old fi les. This new fi le has no legacy logic to get in the way.

Consider the advantages: The logic in the new interface fi le can be completely isolated from the rest of the
system. Scripts and layouts that are designed in this new fi le won’t affect the logic in the old fi les. In a sense, the
developer has a clean slate. New features can be designed that use optimal FileMaker Pro 8 designs without
concern for breaking the context of old logic.

Also consider that after some initial testing on an offl ine set of fi les, the developer can roll out this new fi le
with new features to users by simply including it with the rest of the fi les on the server. New versions with
new features can be rolled out to users whenever necessary. There is no need to have to take the fi les off the
server and import data from the data tables, since there is no data, just interface, in this new fi le.

Instead of designing new features, the developer can rewrite pre-existing features in this new interface fi le.
This approach may be the best if there is no urgency for new features or if some features really cry out to be
redone using the FileMaker Pro 8 optimized design. As each rewritten feature is completed the old version can
be retired and the detritus cleaned up. Using this method the developer can roll out features one by one as
they become ready for use.

Note that it is possible to add temporary or permanent navigation scripts between the new interface and the
old interface as desired. Some minor enhancements (new scripts, selected calculations) may be added to the old
fi les, but it will be possible to keep these to a minimum.

Another variation on this theme is that the developer can bring over some old interfaces and logic from the
original fi les because there is no need nor desire (nor budget) to rewrite them from scratch. FileMaker Pro 8

page 101

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

makes it much easier to “port” code from one fi le to another because FileMaker Pro elements now map by
name instead of by ID when importing scripts or pasting layouts. The exact steps needed to accomplish porting
code will be outlined later in this document.

The developer can decide how much of the old interface and logic is brought over from the original fi les. It
might make sense to bring over all of the interfaces, or just a few scripts and layouts.

There is an important caveat to bringing over interface and logic from converted fi les. The logic in the
converted fi les was based on the table context of one fi le per table. Moving it over into an interface fi le where
that context is not enforced will require some modifi cation. In short, some retrofi tting of table context will be
required, but since it can be done on an as needed basis, the scope of the problem should be less than when
having to retrofi t context across the entire solution.

Consider the benefi ts of this approach: The developer has the time to become familiar with designing solutions
in FileMaker Pro 8. They have an active real world environment in which they can deploy solution components
at regular intervals and that can provide the valuable feedback that is necessary for the success of a solution.
The users begin to benefi t from improved design very early on in the process, and the organization benefi ts
from phased deployment of new technology and earlier ROI.

Eventually all of the interface can be consolidated into a single fi le or a few fi les if desired. Outdated and
obsolete logic in calculation fi elds and scripts can be removed. The old interface is no longer used. The
solution is now in a state of having a FileMaker Pro 8 optimized interface but its data tables are still contained in
the original converted fi les.

Although the solution is closer to being FileMaker Pro 8 optimized, it isn’t there yet. There is much to be
gained from consolidating the data tables to fewer fi les. Once again the improved portability of FileMaker Pro 8
elements can help the developer do just that.

Consolidating Data Tables

The ability to directly edit fi le references makes it possible to change the data fi les from which the new
interface fi le is pulling the data. The developer can re-point the fi le references of the new interface fi le at a
new consolidated data fi le that contains the exact same tables and relationships as the separate data fi les.
The process is relatively straightforward. First a new consolidated data fi le (or fi les) is prepared with exactly
the same tables as the original data fi les had. Then a simple process can be followed that re-points the new
interface fi le at this new data fi le.

This new “consolidated data fi le” could be the same fi le as the interface fi le, though there are signifi cant benefi ts
in the FileMaker Pro 8 application model to keeping the interface in a separate fi le from the data tables.

The data tables are consolidated into a single fi le by following a simple step-by-step procedure outlined below.
All data fi elds (text, number, date, time, container) and all necessary calculation or summary fi elds, including

page 102

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

those that are referenced on layouts or in scripts, need to be recreated with the identical name. Some 3rd-
party tools are available to help automate the procedure. Most specifi cally, FMrobot™ from New Millennium
Communications can automate the process of creating new tables and fi elds, including fi eld defi nitions, based on
the fi elds in an existing FileMaker Pro .FP5 or .FP7 fi le.

There are a couple of techniques to getting the new interface fi le to correctly map to the new data tables,
but they are very simple. First, the interface fi le is duplicated and all script and layout contents (not the actual
layouts) are deleted from the copy. The original interface fi le is saved for a later step. Next, the fi le references
are re-pointed at the new data fi le. This will break the TOs and relationships on the graph but they can be fi xed
by referring to the graph in the original interface fi le.

Once the graph has been restored, the scripts can be re-imported into the fi le from the original interface fi le.
Finally, all the layouts can be re-pasted back into the new interface fi le from the original interface fi le and their
tab order re-created. Since importing and pasting maps FileMaker Pro 8 elements by name, all references will
resolve. This new interface fi le will now function as it did, but it will now access data in the consolidated data
fi le, instead of the old separate data fi les. The only step left is to import the data into the new data fi le.

The solution has now been completely migrated to an optimized FileMaker Pro 8 design. It has a new interface
fi le and a new data fi le. The old fi les are now gone. The developer has had time to learn how to use FileMaker
Pro 8. The users have been able to benefi t from improved workfl ow and interfaces. The organization has already
experienced some ROI. The solution architecture is such that it can be used as a reliable base for ongoing
development.

Following is the step by step methodology for migrating existing solutions to FileMaker Pro 8, affectionately
known as either “CREC”, standing for “Convert, Restore, Extend, Consolidate”.
*Please Note: FileMaker Pro 8 and FileMaker Pro 8 Advanced now include the ability to import tables.
FileMaker Pro 8 Advanced also includes the ability to copy/paste scripts, fi elds, and tables.

Step By Step

1) Convert and Restore original behavior
a) Modify, Convert, Test, Modify

i) See the documentation in the “Conversion Basics” and “Conversion Issues” sections for detailed
information

b) Deploy – Stable Point

2) Extend
a) Add new features to a new interface fi le

i) Create a new (empty) interface fi le
ii) Create File References to each of the old fi les

(1) Note that FileMaker Pro 8 will create a single table and layout in the fi le, which you can ignore
iii) Create Table Occurrences on the relationships graph for each table (fi le) you want to access
iv) Create Relationships as needed

page 103

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

(1) Note that to be able to display a portal or to “go to related record” in your interface fi le, you will
need to create a relationship which may be identical to one which exists in the old fi le

v) Now you can add new features – you have complete fl exibility to create new relationships using the
possibilities of FileMaker Pro 8 and to leverage the new relational model
(1) New Relationships
(2) New Layouts
(3) New Scripts

b) Create temporary (or permanent) navigation between the new interface fi le and the old fi les
 Deploy – Stable Point

3) Consolidate
a) User Interface

i) Re-create the entire old interface in the new fi le or bring over pieces of your old interface and
recreate other pieces using a new design
(1) This can be done all at once or in phases. Retire old interfaces as new ones become available to

replace them

ii) Bring over interface from the old fi les – step by step
(1) In the old fi les

(a) If any old fi les have only one Table Occurrence then create an extra one. This will allow “Go
To Layout” script steps to import correctly.

(b) Add a fi le-specifi c prefi x of your own choosing to script names. This will make them easier
to understand once they are all in the same fi le.

(c) Add a fi le-specifi c prefi x to layout names, for the same reason as for scripts.

(2) In the New Interface fi le
(a) Create fi le references to old data fi les
(b) Create Table Occurrences with exactly the same names as in the old fi les
(c) Create the same relationships as in the old fi les
(d) Create Layouts with the same names as in the old fi les (with prefi x). Do not bring over the

layout contents yet.
(e) Import scripts from old fi les into the new Interface File (rename all to remove ‘imported’)
(f) Copy and paste layout contents from the old fi les into the new fi les. All buttons and fi elds

should resolve correctly. Scripts that referred to external fi les in the old system will still go
to the old fi les.

(g) Point any “Perform Script [External]” script steps at the new local imported versions of them
and add a preceding “Go to Layout” step to appropriately change table context.

(h) Retrofi t Context – Make sure that scripts are always acting on the appropriate table
(i) Examine any Go to Related Record script steps and make sure that the desired target

layout is selected
(ii) Some scripts may need to have a “Go to Layout” step added at the top to ensure the

correct context
iii) Clean Up
iv) Deploy – Stable Point

b) Data Tables

page 104

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

i) Decide how many fi les are required.
ii) Create a brand new empty fi le.

(1) Create tables
(a) Create fi elds

(i) Field Names should be exactly the same as in the original tables.
(ii) Calculation fi elds need to be defi ned as empty (“”) calculations temporarily, since

dependencies may not be in place yet.

(b) This can be automated to a great extent using FMrobot, available from New Millennium
Communications, or by using the new table import features available in FileMaker Pro 8 and
FileMaker Pro 8 Advanced.

(c) Create TOs and Relationships to support fi eld calculations.
(i) These must be named exactly the same as they are in the original fi les.
(ii) Sometimes it may be necessary to change the names of the relationships in the original

fi les as well, because relationships and or TOs from other fi les may have the same names.
It may be desirable to change the names just for clarity as well.

(d) Paste calculations from the original tables into the new tables. Since the fi eld names and
relationship names match, calculations will resolve.

(e) Set any other fi eld defi nitions that depended on the TOs and Relationships – lookups,
validations, etc.

(2) Create any other relationships needed to support referential integrity and functional
dependencies

(3) Re-point the interface fi le at the new data fi le
(a) Make a copy of the Interface File (IF 1). The copy will be referred to as IF 2. Put IF 1 away for

later use.
(b) Modify IF 2

(i) Delete all the scripts
(ii) Delete all the layout contents, not the layouts themselves.
(iii) Re-point the fi le references at the new consolidated Data File
(iv) Remap Table Occurrences to the correct tables.
(v) Repair relationships. Use the graph in IF 1 for comparison.

(c) Import all the scripts back into IF 2 from IF 1
(d) Paste all layout contents from IF 1 to IF 2.

(i) Re-create the tab order

(4) Clean up (remove “ imported” from script names, etc.)
(5) Deploy – Stable Point

Appendix: FileMaker Pro 8 element mapping rules.

When you move FileMaker Pro 8 elements such as layouts, scripts, or calculations from fi le to fi le (or even in the
same fi le), FileMaker Pro 8 tries to resolve any dependencies by name, not by ID as was sometimes the case in
FileMaker Pro 6. This only applies to the process of bringing elements in. Once the elements are in place, IDs are
used to maintain the links.

page 105

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

This is similar to the process of looking up a Contact ID by using Contact Name in an Invoice. The Contact Name
is used to fi nd the Contact ID when the record is being edited, but it is the Contact ID that is used to maintain the
relationship.

For example, when a script is imported it fi nds all the fi elds, layouts, and table occurrences it needs by name. Once
it fi nds them it uses the FileMaker Pro 8 internal ID of each element to link them together. If there are two layouts
or scripts with the required name, then the fi rst one is used. The same rules apply to copying and pasting layout
contents and copying and pasting fi eld calculations.

One exception in the FileMaker Pro 8 element mapping rules is when importing scripts that contain the Perform
Script script step. From FileMaker Pro 8 Help:

 “When importing scripts that contain the Perform Script script step, the link between scripts will be retained
only if the linked scripts are imported at the same time. If a script with the same name is already present in the
target fi le, no attempt will be made to link between the two scripts. If the Perform Script script step references an
external script, the imported script will also reference the external script.”

The consequence of this is that references to pre-existing scripts in the same fi le will need to be reconnected
manually.

About the author

While doing Genetics research in 1990, Todd Geist got hooked on database design. He left academics to form a
FileMaker development company in 1997. In March 2000, he joined New Millennium Communications where he
is now the senior software architect. Todd was the lead designer of Genesis Business Operating Environment®
3.0. Todd was also the lead designer of two of the most popular developer tools: Password Administrator and
ScriptOrganizer.

page 106

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Case Study: Migrating Using the Hub & Spoke Approach

Overview

The purpose of this paper is to provide an overview methodology that will help current FileMaker® Pro users
upgrade their system to FileMaker Pro 8 using the Hub & Spoke Approach (HSA). This paper does not provide a
step-by-step instructions but rather a concept overview for this approach.

Many of the benefi ts of FileMaker Pro 8 cannot be achieved through conversion alone. In addition, maintaining
several complex relationships graphs in many fi les can be diffi cult. Since many companies do not have the time
or resources to invest in rebuilding a solution from scratch, this paper will provide guidance on how current
users can convert their fi les and then implement a series of changes in order to take advantage of the FileMaker
Pro 8 new fi le structure on an as needed basis.

Methodology: The Hub & Spoke Approach

In many solutions there is one fi le that contains the bulk of fi elds, layouts, and scripts. We call this fi le the “Hub”.
The hub presumably contains 75% of the programming logic, interface, scripts, etc. The other fi les may contain a
great deal of data, but a lesser level of complexity in terms of fi elds, scripts, and layouts and are considered the
“Spoke” fi les. In complex solutions, there may be many natural hubs within a system.

The goal of the Hub and Spoke Approach is to convert all the fi les, and then work to recreate the “Spoke” fi les
as new tables in the Hub. Some advantages of this approach are that your system will be easier to maintain,
that you have fewer fi les in which to manage accounts and privileges, and you can take advantage of modular
scripting and layout techniques in FileMaker Pro 8.

In addition to achieving the benefi ts of having a many tables per fi le architecture, we expect the step-by-step
nature of the approach will provide a viable and scaleable method for companies to implement changes over
time.

Case Study: Contact Management Database

We have selected a simple three-fi le contact management system for our example. This system includes a
Company fi le, a related Contact fi le and a related Log fi le.

page 107

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

For users who just do a straight conversion to FileMaker Pro 8 their architecture would look like this:

BEFORE CONVERSION AFTER CONVERSION

Company.fp5 Company.fp7
Contact.fp5 Contact.fp7

Log.fp5 Log.fp7

For users who convert using the Hub & Spoke Approach their converted solution would result in one fi le with
multiple tables and look like this:

BEFORE CONVERSION AFTER CONVERSION

Company.fp5 Company.fp7
-Table 1 (Hub): Company
-Table 2 (Spoke): Contact
-Table 3 (Spoke): Log

Contact.fp5

Log.fp5

Pre-conversion activities:

As with any conversion, there are a number of steps you should take before converting your fi les. You will
also need a copy of FileMaker Pro 8 Advanced and New Millennium’s MetadataMagic. Some pre-conversion
suggestions include:

1. Make a backup of your original fi les.

2. Make sure the passwords in each fi le are consistent and case sensitive (i.e. make sure there are no instances
of “Master password” and “master password” as FileMaker Pro 8 would recognize them as two unique
passwords.

3. Remove unnecessary fi eld defi nitions, scripts and buttons (layout #125, layout copy 2 etc.). This is a small
solution so cleanup is easy. In the case of extremely complicated solutions, or solutions where you are not
sure if certain fi elds or layouts are still in use, do not delete them.

4. Run the DDR using FileMaker Developer 6.

5. Run MetadataMagic

6. Run MetadataMagic’s File Reference Fixer to clean up relationships.

page 108

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Conversion:

Once you have followed any pre-conversion activities, we suggest you perform an “alpha” conversion. If
you have a lot of data in the fi les, make a clone and convert the clone. Essentially, run your system through
the converter fi rst, review the conversion log fi le, and then run the DDR. Your goal is to identify any issues
that should be handled before conversion such as unnecessary relationships. For example, you may have
relationships pointing to fi les you no longer use, or unnecessary duplicate relationships.

Once you have cleaned up your fi les, convert the fi les with all the data in them. This may take longer than the
initial conversion. This is an important step since you will need to import data from external fi les into your new
internal (spoke) tables.

Combining Tables into the Hub

The basic process of recreating tables in the hub fi le involves creating the tables and fi eld defi nitions, resetting
the relationships and value lists, recreating layouts and redoing scripts and buttons. Be sure to make backups at
every stage of the conversion. That way you can roll back to prior changes if you make a mistake.

The following is an example of the steps taken to combine the Contact and Log table into the Company fi le. We
will be providing updates and more details to this approach via our website (www.moyergroup.com).

1. Before converting our fi les, we identifi ed the Company fi le as the “Hub”. We identifi ed the Company fi le
because it had the most fi elds, layouts, and more complicated scripting than the Contact or Log fi le.

2. Once we identifi ed the hub fi le, we printed out the fi eld defi nitions for the “spoke” fi les. In this case we
printed fi eld defi nitions for the Contact fi le and the Log fi le.

3. Next we made a functional reference list (FRL) of key features that this system must include. This list will
be used to update and test the converted system and included items like “create new contact, search for
duplicates, create labels, etc. Depending on the number of users and the overall complexity of the system, this
list could be quite long. In other solutions, like our contact manager, the key is to make sure you have a list of
objectives to test at the end of your conversion.

Create new tables

Using your printed fi eld defi nitions, create all the fi eld names from the Contact fi le being sure to use the exact
same naming conventions. At this time, the goal is to create all the fi eld names (text, date, number) but not
defi ne any calculations, lookups or auto-enter values. These defi nitions will depend on relationships that we will
build in the next step.

page 109

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Reset table references

Now that you have created new table occurrences (TOs), you need to repoint the existing external table
references to the new internal TOs. When you created the new fi les, new TOs were created on the relationship
graph. Do not delete these TOs at this time.

1. Select external TO.

2. Copy the TO name.

3. Redirect the TO to use the internal table.

4. Paste the original TO name (this will help you in accurately recreating your calculations and scripts).

5. If necessary, reset the match fi eld for the relationship (unless fi elds have been created with the exact same
internal FileMaker ID’s the fi elds will not match)

6. Add TOs to refl ect relationships in the spoke fi les (i.e. the Contact fi le points directly to the Log fi le.)

Complete fi eld defi nitions

Now that the relationships are created, you need to complete all the auto-entry functions and calculations so
they are based on the appropriate internal fi le reference. Use your fi eld print out (if you make a .pdf you can
copy and paste fi eld defi nitions into the new fi le). Be careful to select the proper TO when writing calculations.

Import Data

The next step is importing data from the external fi les into the new internal fi les. In order to import data you
need to be on the layout with the proper context (i.e., you must be on a Contact layout to import contact
information).

For larger solutions, and or solutions that are live, you will want to develop the new version in clones, convert
the data when the new system is ready, and import the live data into the new solution.

Copy and Update Layouts

When copying and pasting layouts between external and internal fi les be sure to set the context for the layout. An
important tip is that when copying and pasting layouts, the table reference names in the external fi le must match the
internal reference names. That way you will not have to reset the fi eld names when they come over, it is important
that as you copy and paste layouts between tables, you need to check all fi eld references on each layouts.

If everything is named identically, copy and paste should resolve everything. Also note that if the scripts are in
place with the same names before pasting the layouts, then the buttons will resolve to the correct scripts.

page 110

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

We suggest the best way to update functionality is to go through each of the layouts in a systematic way, and
make sure buttons are working. This will require modifying and creating new scripts. As you modify or make
a new script, we suggest you segregate the scripts that have been reviewed so you can distinguish scripts that
have been tested. You will fi nd that the new structure will render many of these scripts obsolete. For example,
you only need one “Print Portrait” for all three tables. For complicated scripts you can still import them, but we
do not advise importing all scripts as many of the scripts will be rendered obsolete by the new structure.

You will also need to review and update value lists in each of the new layouts.

Conclusion

As a fi nal step you will want to review your functional reference list to make sure all the key components of
your system are working correctly. Running the DDR using FileMaker Pro 8 Advanced is also an excellent way
to review the new system structure.

While the HSA method takes time (this three fi le solution took about three hours to convert and modify), we
believe this method will allow people to make changes to their systems over time. We also expect there to be
third party tools to assist in functions such as importing fi eld defi nitions that will reduce the amount of time
needed to create new fi les.

About the authors

Molly Connolly is the Director of Business Development for The Moyer Group in Chicago. She joined the fi rm
after running Thorsen Consulting, a consulting fi rm she started in 1996. There she developed FileMaker Pro
solutions for a variety of education, advertising, and not-for-profi t organizations. Prior to starting her company,
Molly was a senior consultant for Ernst & Young where she gained cross-industry experience in fi nancial and
workfl ow management processes. She has spoken at the FileMaker Developer’s Conference and was the
technical editor for the book Advanced FileMaker Pro 5.5 Techniques for Developers.

Bob Bowers, president of the Moyer Group, is the co-author of three books on FileMaker Pro, including Special
Edition Using FileMaker Pro 8. In addition, he’s a columnist and contributing editor for FileMaker Advisor
magazine, and is one of only a handful of trainers authorized to teach the FileMaker Professional Foundation
Training Series.

page 111

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The Separation Model: A FileMaker Pro 8 Development Method

Overview

The defi nition of the Separation Model is an architecture that separates the data layer from the presentation
and business layer(s). Developers utilize the Separation Model (SM) to achieve a variety of goals, including;
facilitate solution upgrades (i.e. updates without data imports), impose complex business logic and rules,
emulate a transactional model and create modular re-purposeable solutions. The new relational model in
FileMaker Pro 8, along with a host of new features, supports and encourages this development model more
than ever before.

If you have a FileMaker® Pro solution prior to FileMaker Pro 8 that you plan to upgrade we recommend you
un-hitch the FileMaker Pro 6 thinking and engage in new FileMaker Pro 8 solutions from the ground up. There
are numerous benefi ts inherent in creating that solution in FileMaker Pro 8 using the separation model, all
of which are best achieved by taking a ground up approach. At the end of the process you have a FileMaker
Pro 8 solution optimized for your business and development needs; whether that be a modular system to be
rolled out by department, or a complex system agile enough to keep pace with today’s ever-changing business
environments.

This paper presents not so much a recipe for migrating your previous FileMaker Pro solutions as an in-depth
overview of a development model that is enhanced greatly by FileMaker Pro 8. A variety of developers have
been implementing the separation model using previous versions of FileMaker Pro for a number of years. They
have been creating solutions that attempt to classify the purpose of a fi le and assign it to either the data layer,
interface layer, or business logic layer. The structure of fi les belonging to a typical SM solution created in earlier
versions of FileMaker Pro is outlined below.

page 112

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

As you can see from the diagram, while separation is the goal, it was not completely attained. Key features in
FileMaker Pro 8, most notably external table occurrences and the new relational model, allow developers to
come dramatically closer to said goal.

External table occurrences, new to FileMaker Pro 8, allow one fi le to access the contents of another fi le as
though contained within the current fi le. This means that we can defi ne all data tables in one fi le and, through
external table occurrences, access those tables in a separate interface fi le. External table occurrences do not
require the developer to establish a relationship between the local fi le and the external fi le in order to gain
access to the external fi le’s tables and data. Rather, once a fi le reference is established, the local fi le has the
ability to utilize any table within the external fi le in exactly the same manner as a locally defi ned table (with the
exception of defi ning fi elds, this can only be done in the local fi le.) So now a local fi le can contain a list view, not
only a portal, of data from an external fi le.

Because external fi le references do not require a relationship there is no need to create any tables or fi elds in
the local interface fi le. The illustration below is an example of what an SM solution, which meets the same needs
and solves the same problems as the typical SM solution designed in earlier FileMaker Pro versions, might look
like when created in FileMaker Pro 8.

page 113

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: page 114

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

As we come closer to a complete separation of the data, interface and business application layers, we reap
more of the benefi ts mentioned earlier and are able to leverage our development efforts over more projects.

Prior to beginning an explanation of solution modeling using the new FileMaker Pro 8 new relational model it is
critical that the reader have a fundamental understanding of that model. Please take time to read and become
familiar with the ‘FileMaker 8 Relational Model’ found in the second chapter of this document. We strongly
encourage all developers to learn and understand the new application prior to launching any new development
projects.

The Process

Phase 1: Analyze the solution
Utilizing your development documentation, the FileMaker Developer 6 Database Design Report, or third-party
products such as MetadataMagic, BrushFire, or Analyzer review the entire structure of your solution. For
additional information regarding third-party products visit http://www.fi lemaker.com/products/third_party.html

Preliminary Review
Review the solution with key users or other developers in order to identify fi elds, layouts, scripts, and other

page 115

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

functionality that are no longer required by the solution. We refer specifi cally to those elements no longer
used; layouts created for a specifi c purpose or person which no longer exist, abandoned fi elds and scripts.
Abandoned functionality is clutter and may result in migration of more features than necessary.

Create a Data Dictionary
The goal in your data layer is to slim the fi les down to the extent possible to contain pure data. Therefore, to
begin, study your fi le’s fi eld defi nition lists identifi ed as containing data. Identify and categorize your fi elds as
noted below. With the exception of retaining the logic behind reporting summaries, which will be migrated to a
reporting fi le (in the business layer) most of the FileMaker Pro 6 centric thinking fi elds will be eliminated.

Data
• pure data – text, date, number, etc

(Bear in mind that you may have plain text or number fi elds that are holding derived data; data that
was calculated in a business layer and stored in a text or number fi eld.)

• keys

Business Logic
• derived data – calculated results such as extended price
• summary
• session controls

Interface
• any fi elds used for the sole purpose of presenting data (status current record, status current found

count)

FileMaker Pro 6 centric thinking fi elds
• key fi elds used to pipe data (though there may still be a need to pipe data)
• fi elds used to display or search data from another fi le (unstored calcs, lookups)
• redundant data entry fi elds for tracking modifi cations and controlling record commits
• parameter passing

(This process is more quickly accomplished if you adhere to a naming convention. Further information regarding
naming conventions is offered by Core Solutions: http://www.coresolutions.ca)

Security
Review and understand the security structure in the solution fi les. Reassess the security requirements for
the solution in order to determine if this structure forms an appropriate base to utilize in your FileMaker 8
fi les. The security model in FileMaker Pro 8 is vastly improved and dictates that you re-engineer your security
implementation. See Upgrading to FileMaker Pro 8: How to employ the new, advanced Security systemUpgrading to FileMaker Pro 8: How to employ the new, advanced Security system by
Steven H. Blackwell for an in-depth discussion.

Functional Specifi cation
Refer to the original ‘needs analysis’ documentation or review the solution with key users in order to re-
establish your understanding of the business requirements or purpose this solution is designed to address. Too

page 116

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

often we, as developers, fall into the habit of ‘building a better mouse trap’ when in fact the mice are long gone
and the purpose of the trap today is to support the wobbly table leg. Reconnect with the problems this solution
was originally designed to solve so that, moving forward, you can apply FileMaker Pro 8 in the most appropriate
manner– leaving behind the work-arounds.

Phase 2: Select Data Model and Design Entity Relationship Diagram
With our data fi elds identifi ed in Phase 1 you can more easily begin to establish a data model for your solution.
We recommend you start by arranging data fi elds into tables, our goal is to achieve a normalized data structure
where tables contain only data fi elds with related attributes. The challenge here will be to approach this task
without imposing constraints and assumptions required by earlier versions of FileMaker Pro but no longer valid.
In the past, data models needed to be coerced into a relatively low, fi xed number of tables. For all practical
purposes those constraints have now been eliminated and our architecture should refl ect this.

Once we have established our table structure we can address the placement of tables into fi les/databases. This
step was unnecessary in previous versions as fi les were, by defi nition, equated to tables. In FileMaker Pro 8 we
have the possibility to create one fi le, or database, which contains all of the data tables our solution requires.
(The actual limit of tables allowed in a fi le is 1,000,000.)

Taking the approach of placing all tables in one database will simplify greatly the creation of our solution. One
advantage is the security schema for our data model will need only to be created and maintained in this one
database. Another advantage is the creation and maintenance of our relationships graph(s). Relationships graphs
will be necessary in the data fi le(s) to provide context for any required calculated fi elds. Relationships graphs
are also required to enforce referential integrity, though as we will see later in this document, there is no
requirement that this graph be placed in the same fi le/database as the tables themselves.

However, there are several factors which may recommend more than one fi le/database be used in a data model.
For example, if you intend to deploy a modular solution in which your clients have the option of purchasing
certain modules, the solution might be better served to modularize the data fi les as well.

If a solution will be shared by multiple users and employ the features available in FileMaker Server 8 or
FileMaker Server 8 Advanced be aware that backups are performed on a fi le-by-fi le basis. So, if your solution
contains highly volatile data that requires frequent backups, as well as relatively static data that may suggest a
periodic backup, it may be preferable to divide these tables into different databases in order to meet the needs
of the solution more appropriately. Also, a time may come when we wish to update this fi le by replacing it with
a new version. That update process will require that all data tables be imported into the new fi le.

Understanding that it is possible, but not necessarily preferable, to have all data tables in one fi le we are
presented with the challenge of determining the appropriate number of fi les for our solution. While our
inclination is that it will make sense for our data fi les to include groups of tables, there is also a school of
thought which suggests we may, in the end, prefer to assign each table to it’s own fi le. Time and experience
shape best practices in this area. The limit of 125 fi les hosted on a single FileMaker Server 8 may be a factor
in some circumstances. Regardless of the number of fi les in the model we select, data housing is the primary
purpose of the fi les.

page 117

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Once we have determined the appropriate table and fi le/database structure for our solution we must
determine the appropriate location of the relationships graph(s) that will enforce referential integrity. This is the
graph(s) that imposes the delete rules for your data structure. As these rules and associated graph(s) are a key
component of your solution, careful thought and consideration should be given to placement. Currently there is
no ‘best practice’ recommendation however, we encourage you to consider the following:

• A relationships graph can be composed of table occurrences (TOs) from local tables, external tables, or any
combination of the two.

• Regardless of the location of relationships graphs that contain the delete rules for your solution, these rules
will be imposed if that fi le is open.

• One way to require that the fi le containing the rules for referential integrity be open is to place a TO of a
table* from that external fi le into each of your interface fi les and reference that TO with a blank layout. (*
This table need not have any defi ned fi elds).

Bearing in mind these points, we like the idea of placing all TO groupings (TOGs) that enforce
referential integrity in one location so that we can get the ‘big picture’ and review and
maintain this in one place.

Phase 3: Select Interface Model
It is possible to create a FileMaker Pro 8 database that contains no locally defi ned tables. The relationship graph
in this fi le can be populated with tables based in external fi les. The TOs on this graph function just as TOs based
on locally defi ned tables. (The only indication that a TO is attached to an external fi le rather than the local fi le
is the font style of the name of the TO; regular = local, italicized = external.) Relationships can be established
between these TOs that enforce functional dependency and referential integrity as well as specifying a sort order.

When layouts are created you are required to specify a TO which will provide the context for the layout.
Context defi nes the tables that will be available to that layout for fi eld and portal placement, as well as the path
that will be used in order to view related data. It is important to note that layouts (and layout elements such
as fi elds, portals and buttons) attached to TOs associated with an external fi le will behave in exactly the same
manner as TOs associated with a locally defi ned table. This means list view, table view and fi nd mode, in addition
to all menu commands such as new, delete, duplicate, sort etc. So now we can have a fi le that contains all of the
user interface elements native to FileMaker Pro 8 fi les without the fi le containing any data.

In the past it was common in a SM solution to keep all interface interaction in one fi le. This decision was driven
in large part by constraints in previous versions of FileMaker Pro that are no longer applicable. Previously it was
extremely time intensive and tedious for a developer to port functionality from one fi le to another. In FileMaker
Pro 8 imports (of scripts) and pastes (of layout objects) are now resolved by name, simplifying the process of
transferring complex layouts and scripts from one fi le to another.

What does this mean to our interface model? It is now feasible to consider using multiple interface fi les
which interact with the same data fi le(s). One might choose to create separate interface fi les for different
departments, i.e. accounting, sales, and shipping might each have their own unique fi le(s). Or a developer may

page 118

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

choose to implement different versions or feature sets in various interface fi les, for example demo, light, full, and
web. Each of these options represents a different interface model. The common theme among these models is
that in every case data is stored in fi le(s) outside the fi le(s) provided for user interaction.

It will be up to the developer and the business requirements to dictate how many interface fi les should be
used for any given solution. There are pros and cons associated with using multiple interface fi les or attempting
to constrain all user interaction to one fi le. For example the relationships graph created in one fi le is not
accessible by another fi le. So, if you have several interface fi les that require the same table occurrence groupings
you will need to create and maintain these in both fi les. On the other hand, if you have a complex solution you
may fi nd your relationships graph extending beyond your organizational threshold. Creating additional interface
fi le(s) to address specifi c areas of your solution may provide you with a greater ability to manage and control
your solution. Therefore it is imperative that the developer considers carefully the advantages that multiple
interface fi les might offer.

Phase 4: Select Business Logic Model
Microsoft’s defi nition of the business layer, or business logic, seems quite simple to grasp upon fi rst blush;
“The business layer implements business rules by checking limits, validating data, and providing calculated
or summarized data, etc.”1 However, those new to implementing the SM with FileMaker Pro often fi nd it
challenging to understand this layer. This is because much of what would be classifi ed as belonging to this layer
in a traditional RDBMS is part of the functionality built in to FileMaker Pro. Because many of these features are
‘simply there,’ we as FileMaker developers often tend to mentally group elements from this layer into either the
data or interface layer.

You may not think of it as such, but business logic already exists in your database solutions. Field validation,
value lists, summaries and summarized reports are elements of the business layer. Calculations used to
derive useful data as well as the rules governing how users will access and view data are all business logic. The
FileMaker Pro fi nd mode is another example of business logic within the application. Developers may enhance
this logic by applying business rules to layout objects, fi eld behavior options for example.

If we understand that the business logic layer includes those elements that will enforce the structure, rules and
order required by organization, and that many of the features we love about FileMaker Pro roll these elements
into the fi le structure, why would we want to even consider this as a separate layer?

We separate business logic in order to re-purpose code, enhance modularity, provide a more unifi ed
understanding of a process, and to ease maintenance and future development efforts. Business logic elements
inherent in FileMaker Pro features that provide no true benefi ts if separated are not candidates for
explicit separation.

The extent of separation of business logic from the data layer and presentation layer depends upon many
factors. First, there are certain inherent FileMaker Pro provisions that typically are not separated. Field
validation being the topmost feature and would only be separated for the most regulated environments.
Calculated data may well reside in the data layer, even though it is more appropriately separated. Calculated, or
derived data, fi elds are an example of where explicit separation may not be recommended, but we can imply

page 119

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

separation by utilizing naming conventions and fi eld headings in our table structure. See the fi nal section of this
document for an advanced treatment of separating derived data.

Some value lists are more appropriately defi ned in the presentation layer while others might benefi t by
separation into the business logic layer. For example, the value list for a contact salutation (Mr., Mrs., Ms,
Dr) is not a list that changes or requires frequent modifi cation. As such, it is a safe bet to defi ne this list in
the presentation layer. A value list for departments within a company, on the other hand, is in constant fl ux.
Departments are phased out, renamed and combined. This list will be better managed as a table of information,
separated in the business layer.

Moving value lists from the FileMaker Pro application feature into a table is one example of business logic
stored in table format. There are many others such as: user preferences, graphic resources used by interface
elements, localized text for dialogs stored in tables, and text strings used by plug-ins. It is important that
we begin to recognize and categorize these types of tables as part of the business layer rather than objects
belonging to the data layer.

The “Evaluate” function in FileMaker Pro 8 allows a calculation to reference a textual representation of the
formula that resides in a text fi eld in a table. Using this feature it is possible for a table to store some of your
calculation logic. This formula would be available to fi elds using auto-entered calculations, calculation fi elds and
script steps. By placing a formula in the business logic layer you can programmatically modify it or allow users
access to defi ne or modify this fi eld under very controlled conditions.

FileMaker Pro 8 provides convenient methods for searching on any layout. Since the developer has the ability
to lock fi elds down for entry or for searching, the rules of business are embedded in the presentation layer.
Your solution may benefi t by keeping the search process in the presentation layer. On the other hand, the
business rules of searching may be more easily managed when separated from the presentation layer.

How do we decide when to explicitly separate business logic elements? Solution upgrades and maintenance
drive the most often-separated business logic elements. You can reduce the amount of development time and
impact on the user by separating functions that are prone to frequent development changes.

The business layer element most often separated is the reporting fi le. Reporting fi les are popular for SM
developers as well as more traditional FileMaker developers. Reporting fi les keep complex layout structure
out of your data fi les. You can update a reporting fi le and easily swap it out without disrupting the use of the
database system. You can provide a reporting fi le for ad hoc reporting which allows users to create their own
reports without giving them access to your more sensitive fi les.

Display elements are often contained in separate fi les. For example, the fi lm production company might create
badges that display a blue border for the international crew, a red border for the local crew, and a green border
for the company staff. These are interface elements that follow guidelines of the business and typically are
separate from the presentation layer for ease of maintenance.

Even searching is becoming a more popular function to separate from the data and presentation layer. Providing
the user with a convenient one-stop shop for searching a list of fi elds over a complete set of tables is only one
reason to separate the query process. It also reduces the amount of logic you need to maintain throughout

page 120

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

the presentation layer. You do not have to ensure that value lists are accessible on every layout in which a fi eld
might be searched or that certain fi elds are shut down for searching. You can create more easily maintained
rules for personnel access. All searches are created from a single screen, searches can be saved, edited and
viewed in a more readable format. The query engine can port from one solution to the next. And most
importantly, the query process is available for modular solutions.

In order to create modular solutions or a solution that is re-purposeable, the business logic must be separated
to a greater degree than the single-use custom solution. Imagine creating a solution for a clothing manufacturer
and by changing a handful of fi eld values in a business logic fi le the solution is on its way to becoming useful
for an interior designer. This is the concept behind re-purposing a solution. A contact manager / project
management / invoicing system is a prime example of a solution that ought to be re-purposeable. The basic
functions are the same but the names and rules change. By isolating categories of contacts, discount rules, and
project types in a business logic fi le, you can literally change the names to re-purpose a solution. This is a bit of
oversimplifi cation, as there is always a level of customization required in re-purposing a solution, but your core
work evolves to benefi t all solutions. This is especially attractive for the upgrade path of your existing customers.

A modular solution utilizes an architecture that is highly separated. A number of presentation fi les access
the same core set of data fi les and similarly a core set of business logic fi les. Modular solutions are attractive
for the large workgroup situation in which multiple departments, each with its own required functionality,
access and manipulate data, but for which the data rules are not changed across departments. Maintenance is
simplifi ed, upgrade paths are more easily managed and budgeted, user loads are leveled and teams of developers
can work more independently.

There are also special cases in which business logic will be separated to a great extent. Consider the regulated
industries that answer to the U.S. Environmental Protection Agency (EPA). The EPA puts out regular updates
for rules and regulations regarding, among other things, pollution control limits. The rules for validation of fi eld
input are changing all the time. The rules will never apply across the board for every record in the database. To
put all that logic in the fi eld validation area of FileMaker Pro 8 is unwieldy. In this case, the business rules for
validation would be better managed outside the inherent FileMaker Pro 8 fi eld validation area.

A careful review of the needs for fi eld validation, value lists, reporting, calculation, and the fl exibility within
each of those areas over time, as well as predicting the need for upgrade and enhancement, all factor into your
decision as to how much business logic separation you will employ in your solution. No fast and hard rules
apply and the level of business logic separation you employ in a solution today may differ signifi cantly from the
level of the next solution you deploy.

Phase 5: Create your Data fi le(s) and tables
You will utilize your updated data dictionary, prepared in Phase 1, to create the requisite tables and fi elds.
At fi rst, when modeling and initially implementing the solution architecture, only those key fi elds necessary
for referential integrity should be created. In the fi le(s) in which you have decided to locate the functional
dependency relationships, implement the relationships graph, adding all necessary fi le references, table
occurrences, and relationships.

page 121

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Phase 6: Create Interface and Business Logic Elements
This is the substantial phase when we create fi elds, table occurrences, relations, layouts, and scripts that will be
used by the individuals in the organization to interact with the system.

Phase 7: Import Data and Test
Once you have migrated all elements of your existing solution into the new FileMaker Pro 8 format you will
want to import your existing data into your new solution and thoroughly test functionality.

Features that Support the Model

Some of the key concepts inherent in the new architecture and functionality are:
a) visible and editable fi le references
b) external table occurrences
c) multi-table relationship joins – multiple predicates, relative operators
d) script parameters
e) security / privilege set features
f) locking and committing records
g) portal ranges
h) the “Evaluate” function and custom functions
i) multiple windows

Understanding and utilizing these new FileMaker Pro 8 features effectively will produce solutions that come
much closer to meeting the goals of separation and with less development time than in previous versions of
FileMaker Pro.

As we have seen in the previous section, external table occurrences, a new concept introduced in FileMaker Pro 8,
provide a huge step forward in supporting the separation model.

The features of the new relational model eliminate a myriad of previously necessary FileMaker Pro elements
such as calculated match keys, multi-keys, and external calls to the data fi le to search and return results. This
is a huge step forward for developers who have used the SM in the past and solves some of the stickiest issues
encountered by those developers.

In the past SM developers have created highly controlled and scripted solutions. While some of this may no
longer be required, many scenarios will persist that necessitate solutions to rely on a heavily controlled and
scripted environment. Script parameters, a new feature in FileMaker Pro 8, allow more script re-use and if
used effectively, will reduce the number of scripts in your solution. The script parameter feature allows you to
pass a calculated parameter to any ‘Perform Script’ step – either directly from a button or within a script. For
example, if you have a string of buttons, each linking to a letter in the alphabet, instead of creating 26 scripts,
you can create one script and have each button pass the appropriate letter of the alphabet to that script.

page 122

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The new account based security model and increased granularity provided by the new model will allow
developers of highly controlled solutions to rely on built-in FileMaker Pro 8 security to control many actions
which previously would have required complicated scripting and UI development.

In FileMaker Pro 8 record locking and committing has moved closer to a transactional model. A user can now
enter a fi eld (for example to copy a name to the clipboard) without establishing a record lock. Record locks
are not established until data has been edited. The process of committing records has also been modifi ed and
reduces the need to use globals and additional layouts for data entry in highly controlled environments.

With the ability to set both the initial portal row to be drawn and the number of subsequent portal rows,
developers should be able to eliminate much of the wrangling done in earlier versions with match keys in order
to achieve certain UI elements. A good example where this feature simplifi es the interface is the calendaring
interface, where the user wants to quickly page down to the next day/week/month.

The new ‘evaluate’ function as well as the ability to create custom functions using FileMaker Pro 8 Advanced will
extend the possibilities for separating business logic from the data and presentation layers. These features are
also key players in separating derived data that is discussed at the end of this document for those who want to
take separation a step further.

The ability to have multiple open windows for a fi le is the crowning glory for eliminating the passing of found
set results, data entry, and a universe of possibilities upon which we may not have a complete grasp.

Before you can identify how these elements best enhance the structure and functionality of your solution a
careful review of the architecture and presentation needs of your system is necessary.

Further Thought: Derived Data

Working in FileMaker Pro, developers are often lulled into believing that the best (often only) place to store
derived data is within the same fi le/table as the data upon which the data is based. For example a LineItems
table might contain the fi elds ‘quantity’ and ‘selling price’; the question of where to place the ‘extended price’
fi eld is rarely made. The FileMaker Pro application interface implies that the best solution is a calculated fi eld in
the LineItems fi le. However, there are various situations that suggest that a more appropriate storage space for
this type of data is a separate table. This concept existed in the FileMaker Pro development arena for several
years, most notably represented as a reporting fi le.

The new relational model in FileMaker Pro 8 allows us to separate derived data from data tables more
effectively. So when we discuss selecting a data and business logic model we need to bear in mind that we are
making a determination about placement of derived data fi elds.

Reasons for separating the inherent FileMaker Pro 8 business logic from the data layer (e.g. calculations,
summaries, auto-enter features, and fi eld validation) will depend on solution requirements and may include
any of the following; table and logic updates, maintenance, modularity, solution re-purposing, performance and

page 123

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

security. We can’t imagine a solution that doesn’t use fi eld validation and calculation to some extent but there
are compelling cases where separation proves useful.

Two examples are presented below, these are neither exhaustive nor individuated. Rather they are presented in
order to illustrate and describe various methods which FileMaker Pro 8 enables developers to consider when
architecting new solutions. We will discuss some of the pros and cons inherent to each method. It is assumed
the reader will select those elements from each which apply most appropriately to their specifi c situations.

Combined Data and Derived Data

This structure will be most familiar to developers and places data and derived data fi elds in the same table
within the data fi le(s). Derived data is achieved using calculation fi elds or posted to fi elds (text/number/date/
time etc.), in which case, it is presumed that the business logic layer is performing the requisite calculations and
posting the results in the data table.

While this is the most straightforward model, and for that reason may be the most commonly employed, we
suggest that the appropriate type of derived data to be included in this method are those of an enduring nature.
If the business rules applied in the calculation are not likely to be modifi ed throughout the use of the solution,
full name for example, we would categorized this as enduring. Please note in the illustration below that even
though we have combined elements of the business layer (derived data) into the data layer we are imposing
implied separation on the fi elds by utilizing fi eld headers and naming conventions.

PROS:
This method is most easily and quickly understood.

CONS:
In order to allow someone to edit a calculation fi eld, access must be given to the ‘defi ne database’ dialog.

page 124

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Separation of Derived Data

This structure places data and derived data in separate tables that exist in separate fi les (databases). The
illustration below shows an example of derived data that might be calculated and stored in a separate table, in
this case the InvItemRpt table that is located in another database fi le.

This model also has two variations; one that uses traditional calculation, or auto-entered calculation, fi elds to
store the derived data, and one that relies on functionality available in FileMaker Pro 8 to store the calculation
equation as data in a FileMaker Pro 8 database. This second method makes extensive use of the “Evaluate”
function to store calculation equations in a table of business logic.

Utilizing the “Evaluate” function to store calculation equations will certainly carry with it restrictions and
limitations. It is still too early to make specifi c recommendations with regard to when this feature will be most
appropriately used; however, it appears to be a very valuable feature.

PROS:
If ‘average’ users will have access to sort and export data fi elds, this structure could simplify these dialogs.
Separation of business layer elements from data layer.
Ability to programmatically change business logic.

CONS:
More thought required to set up.

Further Thought: Data Modeling for Modularity and Re-Purposing

The concept of re-purposing a solution ranges from the re-use of core fi les and code from one project to
another to a complex solution that is so incredibly fl exible in its design that by changing content, it can be
deployed for a variety of clients. This is not the same as a vertical market solution, but reaps some of the same
benefi ts – upgrade path, increased profi ts. The more business logic is isolated into its own layer, the closer the
solution becomes to becoming re-purpose able. Modular solutions also employ a core set of data and business
logic fi les (value lists, search engines, derived data and navigation pointers) that are accessed by modular
presentation/business logic elements.

page 125

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

One example of this structure isolates a core grouping of data fi elds that form the backbone of other solutions
the developer intends to create. By isolating these fi elds in each solution the developer can easily and quickly
re-purpose them for a variety of different solutions for different clients.

PROS:
Highly re-purposeable.
Upgrade path across client base.
Ability to create demos quickly.
More rapid development.

CONS:
Not as easily understood ‘at a glance’, more complex relations graph.

Conclusion

The new relational model in FileMaker Pro 8 along with a host of new features, contribute to new discussions
and possibilities for achieving separation in FileMaker Pro 8 solutions. The Separation Model, an architecture
that isolates the data layer from the business and presentation layers provides developers with the ability to
create modular and re-purposeable solutions that reduce development time and hypothetically increase our
profi ts. Separation can also provide the database administrator with a more fl exible environment in which to
maintain solutions.

page 126

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

About the authors

Colleen Hammersley is the founder and director of DataWaves, a FileMaker Solutions Alliance Partner Member.
DataWaves is located in Suttons Bay, Michigan, where Colleen specializes in using FileMaker Pro to provide
practical solutions to everyday chaos.

Wendy T. King, president of Database Mechanic in San Francisco, has developed custom FileMaker solutions
since the days of FileMaker 2. The variety of her clients includes wastewater treatment facilities, cosmetics and
clothing manufacturers, event planners, and trucking companies. Wendy is a long time member of the FSA and a
contributor to FileMaker Advisor Magazine.

(Footnote)
1 Microsoft SQL Server 7.0 Server System Administration Training Kit (Microsoft Press, 1999).

page 127

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Bridging .fp5 and .fp7

Worlds Apart

FileMaker® Pro 8 is a revolutionary step forward, but it is a different piece of software than its previous
versions. FileMaker Pro 8 databases are not compatible with FileMaker Pro 5, FileMaker Pro 5.5 or FileMaker
Pro 6 databases. They have different fi le formats. FileMaker Pro 8 cannot open .fp5 fi les directly nor can earlier
version open FileMaker Pro 8 fi les directly. You can still host FileMaker Pro 5, FileMaker Pro 5.5 and FileMaker
Pro 6 and FileMaker Pro 8 databases on the same network, but you won’t “see” the hosted .fp5 fi les in
FileMaker Pro 8, nor will you be able to “see” .fp7 fi les through earlier versions.

This article is a high-level discussion of how we might “bridge” .fp5 and .fp7 databases. By high-level, I mean
that I will provide some background knowledge and talk about concepts and strategies, but I won’t go into the
details of how you would implement these strategies. My goal is to provide information that might be helpful
towards the larger task of thinking and planning for conversion or migration.

Why bridge? In another context, it might be simpler to say “share” instead of bridge, but I think that the word
bridge is useful because it reinforces the point that .fp5 and .fp7 databases live in separate worlds. At its most
basic level, bridging means sharing data by exporting and importing data in a format that is comprehensible to
FileMaker Pro. At a more advanced level, bridging refers to the process of reading and writing to FileMaker Pro
databases in a controlled fashion to avoid duplication and error.

Before you go about building bridges between .fp5 and .fp7, I would encourage you fully to explore migration
and conversion options outlined in other articles. That said, I can see some possible scenarios where bridging
might be a consideration. For example, you might want to continue to use a legacy FileMaker Pro 6 database
solution that is being phased out even as you phase in its replacement in FileMaker Pro 8; or you might have a
FileMaker Pro 6 solution that is currently serving a mission-critical function such as a database back end for a
CDML web-form that needs to stay in-place until it can be migrated.

Ultimately, whether you want to have .fp5 and .fp7 databases coexist is a business decision. This is an important
decision, but how we arrive at this decision is beyond the scope of this article. However, I’d encourage you
to consult the various articles on methodology and cost-benefi t assessments if you are interested in these
discussions.

Defi nitions

page 128

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Distributed database…
Multiple copies of a database (in whole or in part) installed at various locations

Synchronization…
The process by which two different copies of the database are made to conform to each other

Replication…
The process of creating an exact copy of data or a database in its entirety

Reconciliation…
A decision-making process in which two different copies of data or a database in its entirety are made to
conform or allowed to be non-conforming to each other

Race condition…
A condition where two or more edits are being made simultaneously to the same data with the possibility of
one or more edits being lost

Data collision…
The loss of data due to a race condition

Irreconcilable Differences

To begin, let’s lay out the principal challenges in sharing data between .fp5 and .fp7 databases:

1. Incompatible fi le formats. The FileMaker Pro 8 fi le-format is different from its predecessors. FileMaker Pro
8 cannot read FileMaker Pro 5 or FileMaker Pro 6 fi le-formats natively and vice-versa. You can convert a
FileMaker Pro 5 or FileMaker Pro 6 fi le to FileMaker Pro 8, but you cannot go the other way.

2. No direct connectivity via relationships. You can host FileMaker Pro 8 and FileMaker Pro 5-6 databases on the
same network, but you cannot create relationships between the two. They can coexist, but they cannot share
data directly.

3. No cross-version imports. At the time of this writing, you cannot directly import a .fp5 fi le into a .fp7 database.
If you try to import a .fp5 fi le into a .fp7 database, FileMaker Pro 8 will tell you the .fp5 fi le needs to be
converted fi rst. Additionally, you cannot import .fp7 data into an earlier version’s database.

4. Changes to ODBC/JDBC in FileMaker Pro 8. In FileMaker Pro 5 or FileMaker Pro 6, you set up your FileMaker
database as an ODBC/JDBC data source through the FileMaker Pro client. Other applications that want to
access FileMaker Pro data via ODBC/JDBC must go through a FileMaker Pro workstation with the proper
data-access companion plug-ins installed. In FileMaker Pro 8, you can import data with FileMaker Pro 8 but
you cannot set it up to be an ODBC/JDBC data source. FileMaker Server 8 Advanced can be set up as an
ODBC/JDBC data source. Note: as of the publication of this document, FileMaker Pro 8 and FileMaker Server
8 Advanced can not be used as an ODBC or JDBC data source on Mac OS X.

page 129

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

5. Changes to web connectivity with FileMaker Pro 8. In FileMaker Pro 5, FileMaker Pro 5.5, or FileMaker Pro 6, you
can use the web-companion plug-in with FileMaker Pro (the client) to make your databases web-accessible.
That is, you can publish data using CDML or export data via XML over the web. In FileMaker Pro 8, CDML
is no longer available. Furthermore, all other custom web-publishing abilities are now supported only in
FileMaker Server 8 Advanced but not by the FileMaker Pro 8 client. Bottom line: FileMaker Pro 8 is no longer
a data source that is accessible by plug-ins and APIs using the Web Companion. You can import XML data
with FileMaker Pro 8 via the web but you cannot export XML data. Note that I am strictly talking about using
FileMaker Pro 8 to export data via the web. Instant Web Publishing through FileMaker Pro 8 is very much
alive and well. In fact, IWP in FileMaker Pro 8 is vastly improved and signifi cantly more powerful that it was in
previous versions.

Bridging Strategies

If we cannot connect .fp5 and .fp7 fi les directly, what can we do? In a sense, since .fp7 and .fp5 fi les are not
entirely incompatible with each other, we have to approach the problem as if they were different databases
platforms. In general, there are three ways to bridge .fp5 and .fp7 databases. You can export and import sets of
data between the two. Second, you can establish some kind of direct database connection that will allow you to
push bits of data between them. Finally, you can choose to synchronize or replicate your different data sources.
I’ll discuss these below roughly in the order of increasing sophistication.

Convert to FileMaker Pro 8 and import

The simplest way to get data from FileMaker Pro 5, FileMaker Pro 5.5, or FileMaker Pro 6 databases to
FileMaker Pro 8 databases is to convert existing .fp5 fi les to .fp7 before importing than into FileMaker Pro 8.
Since you cannot open a .fp7 fi le in FileMaker Pro 6 (or earlier) this isn’t an ideal approach for anything but the
most basic tasks of uploading data to FileMaker Pro 8 databases from .fp5 fi les. At the time of this writing, it
doesn’t appear as if you can programmatically (with a script) convert .fp5 fi les and save them, so if total-manual
operation isn’t suffi cient, keep on reading.

Note

Actually, this isn’t quite true. You can create a script in FileMaker Pro 8 to convert an existing fp5 fi le but there
doesn’t seem to be a way to control where the converted fi les are saved. You’ll still be prompted with a dialog
to save the converted fi le to some location and there doesn’t seem to be a way as of this writing to save
without a dialog box.

Exporting and importing via a compatible fi le format

Data from .fp5 and .fp7 databases can be exported in the following compatible fi le formats: tab separated,
comma-separated, SYLK, DBF, WKS, BASIC, Merge, HTML and XML. In the simplest scenario, data that need to

page 130

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

be shared between a .fp5 and .fp7 database can be exported from one database in one of those formats and
then imported on the other end. If needed, this process can be automated by scripts and scheduled to
run periodically.

Import and export via XML/XSLT

The strength of the standard import and export approach is its simplicity. If the data you wish to share have
identical structures that is if they have same tables and fi elds, imports and exports can be an effective way of
exchanging data. Here’s a typical case:

Table 1. Students.fp5 fi le

Field Type

StudentID Text

Name Text

Sex Text

Grade Num

ClassOf Num

Table 2. Students table in MySchool.fp7 database

Field Type

StudentID Text

Name Text

Gender Text

Grade Text

YearOfGraduation Text

In the scenario above, importing and exporting between the Students.fp5 database and the Students table in
the FileMaker Pro 8 database, MySchool.fp7, is a relatively straightforward matter. They have identical table
structures even if they don’t have exactly the same data types. We could run imports manually in both .fp5 and
.fp7, line up the fi elds, select the appropriate import order and save our imports as scripts that can be reused.

However, it is another matter all together if we are trying to exchange data between different relational
structures. Consider an import between these two relational structures:

Structure 1. Flat fi le in .fp5

Table 3. Students.fp5

Field Type

StudentID Text

page 131

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Name Text

Sex Text

Grade Num

ClassOf Num

Class1 Text

Class2 Text

Class3 Text

Structure 2. Relational database in .fp7

Table 4. Students table in MySchool.fp7 database

Field Type

StudentID (pk) Text

Name Text

Sex Text

Grade Num

and

Table 5. StudentClasses table in MySchool.fp7 database

Field Type

CourseNumber Text

Here, simply saving our exports in a compatible merge fi le or tab-separated fi le isn’t suffi cient. We need a way
to transform the structure of the exported data from one database to another. This is where XML and XLST
come into play.

If you are new to XML, I’d recommend visiting XML Central at XML Central at XML Central www.fi lemaker.com/xml. XML is a markup
language that describes data and its structure. You can save exported data from .fp5 fi les and .fp7 fi les as XML
fi les. FileMaker creates these XML fi les in a format that is readable by both FileMaker Pro 6 and
FileMaker Pro 7/8.

Note

If you are familiar with the concept of grammars, note that FileMaker Pro can export XML data in either
FMPXMLRESULT or FMPDSORESULT. However, FileMaker Pro 5-8 will only import XML data that has been
formatted with FMPXMLRESULT. FMPDSORESULT has been deprecated in FileMaker Pro 8. It exists to support
legacy functionality, but you should avoid using FMPDSORESULT when possible.

page 132

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

The beauty of the FileMaker Pro XML import feature is that we can tell FileMaker Pro to transform a particular
XML data fi le before importing it. We can tell FileMaker Pro to rename fi elds or even to restructure the
data with transformation stylesheets, otherwise known as XSL. This business of transforming data with XSL
stylesheets is also called XSLT.

Using XML and XSLT, we can take data from one database structure and coerce it into a suitable structure on
import. Thus, to solve the problem above of importing data between different database structures, we might
write a stylesheet to “fl atten” the exported data into the StudentCourses so that it can be imported nicely
into the Students.fp5 database fi le. The catch is that these transformation scenarios are likely to be unique to
your .fp5-.fp7 bridging needs. You, or someone who understands what you want to do has to write these XSL
stylesheets for your particular transformation scenarios.

ODBC

ODBC is an application programming interface (API) for executing SQL statements. SQL stands for structured
query language and is the common “language” for communicating with most relational databases. The ODBC
approach to bridging .fp5 and .fp7 databases offers a little more power over fi le-based import/exports at the
cost of some added complexity.

You can fi nd additional instructions on setting up FileMaker for ODBC sharing in FileMaker Pro 8 through the
application help system.

In FileMaker Pro 6, you must confi gure a copy of FileMaker Pro (not FileMaker Server) to be the ODBC data
source by installing the FileMaker ODBC driver and the Data Access Companion plug-ins on the computer
running FileMaker Pro 6. You cannot confi gure FileMaker Server directly to be the ODBC data source. There
is a subtle difference between the concept of setting up FileMaker Pro to access other ODBC data sources
and that of setting up a FileMaker Pro database to be accessed as an ODBC data source. To connect FileMaker
Pro to other ODBC data sources, you need to make sure you have the proper database drivers and a properly
confi gured data source name (DSN). DSNs are typically confi gured using your operating system’s ODBC
control panel or driver manager. Here is table to illustrate the ODBC capabilities among FileMaker Pro 6,
FileMaker Server 5.5, FileMaker Pro 8 and FileMaker Server 8:

Table 6. FM ODBC Capabilities

FMP 6 FMS 5.5 FMP 8 FMS 8

Can be confi gured to be an ODBC Data Source? Y N N Y

Can connect to remote data sources via ODBC? Y N Y N

One advantage of using ODBC as a bridge between .fp5 and .fp7 is that you can import directly from the
FileMaker data source without fi rst going through the intermediate step of exporting the data to an external
fi le. This eliminates the need for maintaining a shared fi le location between the two as well as the additional
scripts required to export the data.

page 133

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

Assuming that you have confi gured your .fp5 and .fp7 to be proper data sources, you can use the
File>Import>ODBC Source... command to launch the ODBC import dialog box. Unlike standard imports
between FileMaker Pro databases, you don’t have to fi nd the correct set of records in the remote FileMaker
source before performing the import. You can issue a SQL statement to return the proper records for import
entirely within the import fi le itself. Moreover, you can write data to an external database in an incremental
fashion and with more granular control. With ODBC, it is possible to create a script to execute SQL statements
to save data to another FileMaker Pro database. Moreover, the anticipated improvements to ODBC services in
FileMaker Pro 8 promises to make this approach practical in a real world setting.

JDBC

JDBC stands for Java Database Connectivity. Like ODBC, it is an API that provides connectivity between many
SQL databases. Unlike, ODBC, FileMaker Pro 6 doesn’t let you import data from a “JDBC source” from
within FileMaker Pro itself--there is no Import...>JDBC command. Another potential impediment is that JDBC
connections to FileMaker Pro are made using the HTTP protocol via the Web Companion plug-in. You have to
turn on sharing via Web Companion in FileMaker Pro 6.

FileMaker Pro 8 lets you import data via JDBC, but it can’t export data via JDBC. To do that, you need FileMaker
Server 8 Advanced. You can execute SQL statements in FileMaker Pro 8, but these are really ODBC SQL calls,
not JDBC calls.

At this time, as far as bridging .fp5 and .fp7 databases is concerned, JDBC appears to be a useful “high-end”
technology, if you want to write your own replication or synchronization engine.

XML interchange between .fp5-.fp7 via the web

When FileMaker introduced XML in version 5.5, it offered a compelling way of creating lightweight XML based
web-services through the web-companion plug-in. The idea is that one could set up a .fp5 database using the
web-companion plug-in to listen for instructions sent to it over the web (HTTP). FileMaker Pro could then
process those instructions and return the results in nicely formatted XML. Thus, instead of saving and picking-
up export fi les from some shared location, we could, in theory, script two different FileMaker Pro databases to
import as well as write data to one another over the web.

FileMaker Pro 8 can query other web services and import XML data. To get XML data out of FileMaker Pro 8
databases, you’ll need to use FileMaker Server 8 Advanced. That said, there are some benefi ts to this approach.
Unlike ODBC, XML over HTTP is supported on both Mac OS X and Windows. As of this writing, ODBC
connectivity support will only be available in FileMaker Server for Windows 2000 Server and Windows 2003
Server

More importantly, with XML interchange over the web, it is also possible to establish smaller, but more frequent,
exchanges between two different databases and to do so over the wide-area-network. You can write data
directly to specifi c records and in a more incremental fashion. For example, it would be possible to write your

page 134

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

FileMaker Pro 8 application to selectively copy data to a remote FileMaker Pro 6 database when the user clicks
an “update remote” button.

The actual mechanics of doing data interchange over XML/HTTP deserve much greater consideration than I
am able to give in this article. There are also other considerations, such as record locking, size limitations of
the HTTP request, HTTP GET vs. POST, and SSL, that aren’t covered here. Just because it is possible, doesn’t
mean it is necessarily a good idea. This approach requires that you have suffi cient understanding of querying
various versions of FileMaker Pro databases over the web, a solid grasp of XML, the ability to apply XSLT where
necessary, and the knowledge to manage web-based security as well as a clear understanding of the limitations
of data privacy and authenticity in FileMaker Pro 6 or FileMaker Pro 8.

There are caveats to the import-export strategies above. For one, in all scenarios the contents of
container fi elds are not supported. This can be overcome with the ExportFM plug-in from New Millennium
www.newmilennium.com which supports scripted export and import of container fi eld contents.

A bigger issue has to do with merging changes between databases that are being used simultaneously. In a one-
way import scenario, the import-export strategies outlined above might be suffi cient to share data between
.fp5 an .fp7 databases. The problem gets trickier if these databases need to be synchronized. Let’s say you have
a Students database in .fp5 and another in .fp7. Both co-exist peacefully in your school, but both databases
are being used by different groups of people, and records in both databases can be modifi ed independently
of each other. If Abdul in The Department of Student Records updates a student, John Smith’s address in his
.fp7 Students table but Homer in Accounts updates the phone number in the John Smith’s record in his .fp5
database, we now have a situation where changes from both might need to be merged. John’s Smith record in
both Abdul’s .fp7 database and Homer’s fp5 database might need to have the latest phone number and address
info. As such, the import/update approach alone may not be suffi cient to reconcile these changes.

This is a classic synchronization issue with few easy solutions. The crux of the issue is that if the same record
that is stored in two data stores has been modifi ed separately we want to be able to reconcile the changes.
There are two possibilities. You can write your own synchronization/reconciliation application for your specifi c
database needs or you could adopt a third-party solution such as SyncDeK www.SyncDeK.com.

Replication with SyncDeK

SyncDeK is not a FileMaker Pro application. It is currently a Java-based solution that allows users to replicate
data between different database nodes. It supports FileMaker Pro versions 5 through 8 and will work over
nearly all standard network protocols such as SMTP (email) and HTTP (web). SyncDeK is a cross-platform
set of databases and FileMaker Pro plug-ins that allows different copies of databases to be synchronized via
automated email messages or the web, all from within a FileMaker Pro solution.

One of the most important features of SyncDeK is that it does not require an always-on Internet connection,
allowing offi ces (known as “nodes” in SyncDeK parlance) to synchronize at their own convenience. Because the
synchronization exchange is fully automated, the only interactions required from the user are initiation of the
synchronization and reconciliation in the case of race conditions.

page 135

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

SyncDeK uses industry standard DES encryption, so data transferred over the Internet is secure from casual
observers and other forms of data interception. SyncDeK provides a method of capturing not only record
creation and edits, but also record deletion, and a method of propagating those changes to other databases.
Unlike the traditional “update import” in FileMaker Pro, SyncDeK allows data to be merged together, capturing
fi eld-level changes and combining them in the record. While it will not prevent race conditions, it provides fi eld-
level reconciliation. This allows the individual node to decide whether or not to accept a particular edit if a race
condition has occurred in ordered to avoid the data collision side effect.

SyncDeK introduces the concept of record ownership to each “node” of the database. For example, records
created by Abdul who is using a FileMaker Pro 6 database are owned by Abdul. For such records, Abdul can
decide to whom modifi cations are propagated and from whom and for which fi elds it will accept modifi cation
of those records. This gives the Abdul the ability to prevent accidental modifi cation or deletion of key data while
allowing other offi ces access to the records and the ability to change those records. The nodes that don’t own
the record are free to modify and/or delete the record as they see fi t, however those modifi cations will not
necessarily propagate back to Abdul’s database or to other nodes.

Records can be created in any node, whether in FileMaker Pro 6 or FileMaker Pro 8. Those records are owned
by their originating nodes. As the owner node, Abdul has the ability to determine whether those records are
propagated out to other nodes, and in turn, what changes it will accept - if any. In the default confi guration,
records that are deleted by the owner node are deleted from other nodes. If a node deletes a record it
does not own and propagates that deletion back to the owner, the owner has the option to accept, decline,
or defer the decision. If the owner declines the deletion, any future modifi cation to that record and ensuing
synchronization will cause that record to be recreated at the node that initially deleted it.

The beauty of SyncDeK is that the actual mechanics of exporting and importing between FileMaker Pro 6
and FileMaker Pro 8 can be made transparent to the user. However, this interchange is not “live”. When a user
modifi es a record in one SyncDeK node, the same record in other copies is not locked automatically. In other
words, inherent in a distributed database system is the possibility of a race condition. SyncDeK is not able to
prevent a race condition.

However, it provides a way of dealing with it through its confl ict resolution process. When a record is edited at
multiple nodes and subsequently synchronized, SyncDeK will provide each node with the option to accept or
decline the confl icting changes on a fi eld-by-fi eld basis. This process will allow the various copies of the database
to remain out of sync however only at the explicit desire of each location.

Choosing the right strategy

Choosing the right bridge depends on several factors. There are no easy answers. You should fi rst consider
your overall database needs and decide whether it makes sense for you and your users to be using .fp5 and .fp7
databases at the same time. What are your overall goals? Do you have to maintain two FileMaker Pro platforms?
Is it possible to convert all of your existing database solutions to .fp7? If you have to migrate incrementally, what
is your migration time frame? What is your budget?

page 136

Upgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8: Migration Foundations and MethodologiesUpgrading to FileMaker 8:

If you decide that bridging is necessary, it is worth thinking through your bridging strategies in the context of
your overall migration plan. Which applications and databases are mission-critical? How are these databases
connected to other systems? How tightly are they connected? Is it possible to rely on imports and exports
to exchange data? Do you need these exchanges to be automated or is it suffi cient for them to be relatively
manual. What sort of technical expertise can you count on to maintain these bridges?

I offer these questions as starting points for discussion and planning. My personal opinion is that you should
turn to bridging as a last resort. It may ultimately be necessary, but FileMaker Pro 8 promises to open a whole
new dimension of database experience to users and developers alike and from this vantage point, the sooner
we all cross the bridge, the better.

About the author

Ernest Koe is the executive VP and Chief Methodologist at inRESONANCE, Inc. a FileMaker Solutions Alliance
Partner based in Northampton, Massachusetts. inRESONANCE is a strategy and technology consulting fi rm
serving schools and non-profi t organizations; iR provides customizable FileMaker Pro solutions, FileMaker Pro
training as well as web-design and integration services to clients worldwide. See www.inresonance.com for
more information about inRESONANCE.

Please Note: The following Appendix was created to capture FileMaker 7 conversion issues and has not been
updated to refl ect any minor FileMaker 8 differences. Please refer to the “Converting FileMaker Databases from
Previous Versions” pdf document included on the CD with FileMaker Pro 8 or FileMaker Pro 8 Advanced for
updates.

page 137

